Detaillierte Ansicht der Korona einer Sonnenfinsternis

In der Bildmitte ist die dunkle Scheibe des Mondes, außen herum fächert sich die zarte, gefaserte Korona der Sonne auf. Die Strahlen der Korona reichen weit über das Bild hinaus.

Bildcredit und Bildrechte: Phil Hart

Nur in der flüchtigen Dunkelheit bei einer totalen Sonnenfinsternis sieht man das Licht der Sonnenkorona. Normalerweise wird die ausgedehnte Korona von der hellen Sonnenscheibe überstrahlt. Die äußere Atmosphäre der Sonne ist ein faszinierender Anblick. Doch die zarten Details und die enorme Bandbreite an Helligkeit in der Korona sind zwar mit dem Auge erkennbar, aber bekanntermaßen schwierig zu fotografieren.

Das Bild ist eine detailreiche Studie der Sonnenkorona. Es entstand aus zahlreichen Aufnahmen und wurde digital bearbeitet. Die Aufnahmen stammen von der totalen Sonnenfinsternis am 20. April 2023. Sie wurden im australischen Exmouth fotografiert. Man erkennt deutlich die verworrenen Schichten und leuchtenden Kaustiken der Mischung aus heißem Gas und Magnetfeldern, die sich ständig verändern. Helle, rosarote Protuberanzen ragen in Schleifen über den Sonnenrand.

Schon in sechs Tagen findet eine totale Sonnenfinsternis statt. Vielleicht ist dann bei klarem Himmel eine ähnliche Sonnenkorona zu sehen, und zwar auf einem schmalen Pfad, der über Nordamerika verläuft.

NASA-Berichterstattung: Totale Sonnenfinsternis am 8. April 2024

Zur Originalseite

Wirbelndes Magnetfeld um das zentrale Schwarze Loch der Galaxis

Vor einem schwarzen Hintergrund leuchtet eine Spiralstruktur aus Fäden, die von innen nach außen verlaufen. Die Fäden sind in einen orangefarbenen Hintergrund gebettet.

Bildcredit: EHT-Zusammenarbeit

Was geschieht um das große Schwarze Loch im Zentrum unserer Galaxie? Es saugt Materie aus einer wirbelnden Scheibe an – einer Scheibe, die magnetisiert ist, wie jetzt bestätigt wurde. Vor kurzem wurde beobachtet, dass die Akkretionsscheibe des Schwarzen Lochs polarisiertes Licht aussendet, eine Strahlung, die häufig mit einer magnetisierten Quelle in Verbindung gebracht wird.

Das Bild zeigt eine Nahaufnahme von Sgr A*, dem zentralen Schwarzen Loch unserer Galaxie, die von Radioteleskopen aus aller Welt aufgenommen wurde, die am Event Horizon Telescope (EHT) Verbund beteiligt sind. Überlagert wird sie von gekrümmten Linien, die polarisiertes Licht anzeigen, das wahrscheinlich von wirbelndem, magnetisiertem Gas emittiert wird, das bald in das Schwarze Loch mit einer Masse von mehr als 4 Millionen Sonnenmassen stürzen wird.

Der zentrale Teil dieses Bildes ist wahrscheinlich dunkel, weil zwischen uns und dem dunklen Ereignishorizont des Schwarzen Lochs nur wenig Gas zu sehen ist, welches auch Licht aussendet. Die fortgesetzte Beobachtung von Sgr A* und des zentralen Schwarzen Lochs der Galaxie M87 mit dem EHT könnte neue Erkenntnisse über die Schwerkraft Schwarzer Löcher und die Entstehung von Scheiben und Jets durch einfallende Materie liefern.

Zur Originalseite

Totale Sonnenfinsternis am unteren Ende der Welt

Über dem Flügel eines Flugzeuges ist ein klarer, abgeschatteter dunkelblauer Himmel, in der Mitte leuchtet die Sonnenkorona rund um den schwarzen Mond. Links und rechts neben dem Schatten ist der Himmel hellorange gefärbt.

Bildcredit und Bildrechte: Petr Horálek (ESO ESO-Fotobotschafter, Inst. für Physik in Opava); Danksagung: Xavier Jubier

Ende 2021 gab es eine totale Sonnenfinsternis, die nur am Ende der Erde sichtbar war. Um das ungewöhnliche Phänomen einzufangen, flogen Flugzeuge über die bewölkte Meereslandschaft des Südlichen Ozeans. Das hier gezeigte Bild zeigt eine relativ spektakuläre Aufnahme, bei der der helle Fleck die äußere Korona der Sonne ist und der sich verfinsternde Mond als dunkler Fleck in der Mitte zu sehen ist. Links und unten im Bild sind die Tragfläche und der Motor des Flugzeugs zu sehen, während ganz links ein weiteres Flugzeug zu sehen ist, das die Finsternis beobachtet.

Der dunkle Bereich des Himmels, der die verfinsterte Sonne umgibt, wird als Schattenkegel bezeichnet. Er ist dunkel, weil man durch einen langen Luftkorridor blickt, der vom Mond beschattet wird. Wenn Sie die verfinsterte Sonne genau betrachten, können Sie den Planeten Merkur gleich rechts daneben erkennen. Um die nächste totale Sonnenfinsternis zu sehen, müssen Sie nicht bis ans Ende der Welt reisen. Der Pfad der totalen Sonnenfinsternis wird Nordamerika am 8. April 2024 durchqueren, also in etwas mehr als einer Woche ab heute.

NASA-Berichterstattung: Die totale Sonnenfinsternis am 8. April 2024

Zur Originalseite

Mittelalterliche Astronomie aus Stift Melk

Dieses Blatt aus einer Handschrift zeigt oben die Geomitrie einer Mond- und einer Sonnenfinsternis, unten ein Diagramm des Sonnensystems und eine Tabelle zur Berechnung des Ostersonntags.

Bildcredit: 2009 Paul Beck (damals: IfA, Univ. Wien) und Georg Zotti (damals VIAS, Univ. Wien); Bildrechte: Bibliothek von Stift Melk, Frag. 229

Diese zufällig entdeckte Manuskriptseite bietet einen grafischen Einblick in die Astronomie des Mittelalters, vor der Renaissance und dem Einfluss von Nikolaus Kopernikus, Tycho Brahe, Johannes Kepler und Galileo Galilei. Die faszinierende Seite stammt aus Vorlesungsnotizen über Astronomie, die der Mönch Magister Wolfgang de Styria vor dem Jahr 1490 zusammengestellt hat.

Die oberen Tafeln veranschaulichen deutlich die notwendige Geometrie für eine Mond- (links) und Sonnenfinsternis im ptolemäischen System, bei dem die Erde im Zentrum sitzt. Unten links befindet sich ein Diagramm der ptolemäischen Ansicht des Sonnensystems mit einem Text oben rechts, der die Bewegung der Planeten nach dem geozentrischen Modell des Ptolemäus erklärt. Rechts unten befindet sich eine Tabelle zur Berechnung des Datums des Ostersonntags im Julianischen Kalender. Die illustrierte Manuskriptseite wurde im historischen Stift Melk in Österreich gefunden.

Zur Originalseite

Galileos Europa

Europa ist etwas mehr als halb beleuchtet, die beleuchtete Hälfte ist oben. Der Jupitermond ist weiß-grau und von markanten roten Rissen überzogen.

Bildcredit: NASA, JPL-Caltech, SETI-Institut, Cynthia Phillips, Marty Valenti

Beschreibung: Als die Raumsonde Galileo in den späten 1990er Jahren das Jupiter-System durchquerte, nahm sie atemberaubende Bilder vom Jupitermond Europa auf. Sie entdeckte auch Hinweise darauf, dass die eisige Mondoberfläche höchstwahrscheinlich einen tiefen, globalen Ozean verbirgt. Die von Galileo gesammelten Bilddaten des Mondes Europa wurden hier überarbeitet, um ein für das menschliche Auge möglichst realistisches Farbbild zu erzeugen.

Die langen, gekrümmten Risse auf Europa lassen flüssiges Wasser unter der Oberfläche vermuten. Die dafür notwendige Energie wird von Gezeitenkräften erzeugt, die entlang seiner elliptischen Umlaufbahn auf den Jupitermond wirken. Faszinierend hierbei ist, dass dieser Prozess auch ohne Sonnenlicht die lebensspendende Energie liefert und somit Europa zu einem der besten Orte macht, um nach Leben außerhalb der Erde zu suchen.

Die Juno-Raumsonde umkreist Jupiter seit mehreren Jahren als künstlicher Mond und hat dabei immer wieder die Wasserwelt überflogen. Die gesammelten Bilder und Daten dienen zur Erforschung der Bewohnbarkeit (Habitabilität) von Europa. Noch diesen Oktober soll die Mission Europa Clipper zu einer entsprechenden Forschungsreise in einen Orbit um Europa starten.

Zur Originalseite

Millionen Sterne in Omega Centauri

Der Kugelsternhaufen im Bild ist riesig und sehr dicht voller Sterne. Im Sternhaufen sind zahlreiche gelblich leuchtende Sterne verteilt.

Bildcredit und Bildrechte: Massimo Di Fusco und Mirco Turra

Der Kugelsternhaufen Omega Centauri, auch bekannt als NGC 5139, ist 15.000 Lichtjahre entfernt. Der Haufen ist vollgepackt mit etwa 10 Millionen Sternen, die viel älter als die Sonne sind, in einem Volumen von etwa 150 Lichtjahren Durchmesser.

Er ist der größte und hellste von etwa 200 bekannten Kugelsternhaufen, die sich im Halo unserer Milchstraßengalaxie tummeln. Obwohl die meisten Sternhaufen aus Sternen mit demselben Alter und derselben Zusammensetzung bestehen, weist der rätselhafte Omega Cen verschiedene Sternpopulationen mit unterschiedlichen Altersstufen und chemischen Häufigkeiten auf.

Omega Cen ist möglicherweise der Restkern einer kleinen Galaxie, die mit der Milchstraße verschmolzen ist. Mit ihrem gelblichen Farbton sind die roten Riesensterne von Omega Centauri in dieser scharfen, farbigen Teleskopaufnahme leicht zu erkennen.

Zur Originalseite

Der Coma-Galaxienhaufen

Im Bild sind unterschiedlich helle und große Galaxien verteilt, einige davon sind von gelblichen Nebeln umgeben, zwei links oben haben einen bläulichen Schimmer.

Bildcredit und Bildrechte: Joe Hua

Fast jedes Objekt auf diesem abgebildeten Foto ist eine Galaxie. Der hier abgebildete Coma-Galaxienhaufen ist einer der dichtesten bekannten Galaxienhaufen – er enthält Tausende von Galaxien. Jede dieser Galaxien beherbergt Milliarden von Sternen – genau wie unsere eigene Milchstraßengalaxie.

Obwohl er im Vergleich zu den meisten anderen Galaxienhaufen sehr nahe liegt, braucht das Licht des Coma-Haufens immer noch Hunderte von Millionen Jahren, um uns zu erreichen. Tatsächlich ist der Coma-Haufen so groß, dass das Licht Millionen von Jahren braucht, um von einer Seite zur anderen zu gelangen.

Die meisten Galaxien im Comahaufen und in anderen Haufen sind elliptisch, während die meisten Galaxien außerhalb von Haufen spiralförmig sind. Die Natur der Röntgenemission von Coma wird noch untersucht.

Zur Originalseite

Der Ionenschweif des Kometen Pons-Brooks

Links strahlt der Kopf eines Kometen, vorne ist er von einer türkis-grünen Koma umgeben, nach rechts oben breitet sich ein langer, stark aufgefächerter Schweif aus.

Bildcredit und Lizenz: James Peirce

Komet Pons-Brooks kann eine schöne Geschichte erzählen. Dieser eruptive schmutzige Schneeball wurde im Jahr 1385 zum ersten Mal entdeckt und kehrt alle 71 Jahre in das innere Sonnensystem zurück. Dieses Mal ist er ein Spektakel für lange Belichtungszeiten.

Im heutigen Bild ist der hellblaue Streifen der Ionenschweif, der aus geladenen Molekülen besteht, die vom Sonnenwind vom Kern des Kometen weggeblasen werden. Der Ionenschweif erhält vom Sonnenwind und der Rotation des Kometenkerns seine Form und zeigt immer von der Sonne weg.

Komet 12P/Pons-Brooks ist jetzt im Nordwesten mit einem einfachen Fernglas am frühen Abendhimmel sichtbar und bewegt sich sichtbar von Nacht zu Nacht. Der Komet, der oft zum Ausbruch neigt, sollte sogar noch heller werden und womöglich – bei Tag! – mit freiem Auge sichtbar werden für jene, die sich am 8. April im Bereich der totalen Sonnenfinsternis befinden.

Zur Originalseite