Der prächtige Carinanebel

Der Carinanebel im Bild leuchtet rötlich und besteht aus lebhaften Fasern aus Gaswolken. Links oben leuchtet der helle Stern Eta Carinae. Im Bild sind Sternhaufen verteilt.

Bildcredit und Bildrechte: Peter Ward (Barden Ridge Observatory)

Der große Carinanebel ist auch als NGC 3372 bekannt. Das Juwel am Südhimmel ist größer als 300 Lichtjahre. Es zählt zu den größten Sternbildungsregionen in unserer Galaxis. Wie der kleinere, nördlichere Orionnebel ist auch der Carinanebel mit bloßem Auge leicht sichtbar. Doch er ist 7500 Lichtjahre entfernt. Das ist etwa die 5-fache Distanz zum Nebel im Orion.

Diese prächtige Nahaufnahme entstand mit Teleskop. Sie zeigt beachtliche Details der leuchtenden Fasern aus interstellarem Gas und dunklem kosmischem Staub im Zentrum. Das Sichtfeld ist mehr als 50 Lichtjahre breit. Im Carinanebel sind junge Sterne mit extrem viel Masse verteilt. Dazu gehören die Sterne im offenen Sternhaufen Trumpler 14, er leuchtet unter der Mitte.

Der veränderliche Stern Eta Carinae ist der hellste Stern im Bild. Er ist immer noch rätselhaft. Eta Carinae hat weit über 100 Sonnenmassen. Er leuchtet über dem staubigen Schlüssellochnebel NGC 3324. Vielleicht steht er an der Kippe zu einer Supernovaexplosion. Röntgenbilder zeigen, dass der Carinanebel einst eine wahre Supernovafabrik war.

Zur Originalseite

IC 5067 im Pelikannebel

Von links unten ragt eine orange-braune aufgetürmte Wolke ins Bild, der Hintergrund ist schwarz-blau. Im Bild sind wenige Sterne verteilt.

Bildcredit und Bildrechte: DatenSubaru-Teleskop (NAOJ), R. Colombari, Bearbeitung – Roberto Colombari

Der Emissionswall auf dieser bunten Landschaft am Himmel ist als IC 5067 katalogisiert. Er gehört zu einem größeren Emissionsnebel mit einer erkennbaren Form, der Pelikannebel genannt wird, weil er die Kurve von Kopf und Hals eines kosmischen Pelikans bildet. Der Nebel ist etwa 10 Lichtjahre groß.

Die Atome im Nebel leuchten in schmalen Emissionslinien. Das markante Leuchten wurde in eine Palette von Falschfarben übersetzt, die durch Bilder des Weltraumteleskops Hubble bekannt wurde. Regionen, in denen Sterne entstehen, wurden damit gefärbt.

Das Bild ist ½ Grad breit. Die dunklen Formen sind Wolken aus kühlem Gas und Staub. Sie werden von den Winden und der Strahlung der heißen, massereichen Sterne geformt. Nahaufnahmen einiger Wolken zeigen klare Anzeichen neu entstehender Sterne.

Der Pelikannebel ist als IC 5070 katalogisiert. Er ist etwa 2000 Lichtjahre entfernt. Ihr findet ihn, wenn ihr vom hellen Stern Deneb im hoch fliegenden Sternbild Schwan Richtung Nordosten sucht.

Zur Originalseite

LL Orionis: Wenn kosmische Winde kollidieren

Mitten in einem Nebel leuchtet ein Stern, der rechts von einer Bugwelle umgeben ist. Der Sternwind des Sterns im Bogen verdrängt langsameres Gas, das in seine Richtung strömt.

Bildcredit: Hubble-Vermächtnisarchiv (AURA / STScI), C. R. O’Dell (Vanderbilt U.), NASA

Wie entstand dieser schöne Bogen im Weltraum? Das gewölbte, zierliche Gebilde ist eine Kopfwelle. Sie entsteht dort, wo der Wind des jungen Sterns LL Orionis mit dem Fluss des Orionnebels kollidiert. Die Bugwelle ist etwa ein halbes Lichtjahr groß. Der veränderliche Stern LL Orionis ist noch im Entstehen. Er treibt in Orions Sternschmiede und erzeugt einen Sternwind, der energiereicher ist als der Wind unserer Sonne, die im mittleren Alter ist.

Wenn der schnelle Sternwind auf langsames Gas trifft, entsteht eine Stoßfront. Sie ist ähnlich der Bugstoßwelle vor einem Boot, das durch Wasser fährt, oder einem Flugzeug, das mit Überschallgeschwindigkeit fliegt. Das langsamere Gas strömt aus dem heißen zentralen Sternhaufen im Orionnebel, dem sogenannten Trapez. Es liegt rechts unten außerhalb des Bildes.

Die Stoßfront um LL Ori hat die dreidimensionale Form einer Schale. Sie leuchtet am unteren Rand am hellsten. Das komplexe Sternbildungsgebiet im Orion zeigt eine Vielzahl ähnlicher fließender Formen. Sie gehen mit Sternbildung einher, zum Beispiel bei der Kopfwelle um einen blassen Stern rechts oben.

Das Farbkomposit ist Teil eines Mosaiks, das den großen Nebel im Orion zeigt. Es wurde 1995 mit dem Weltraumteleskop Hubble fotografiert.

Zur Originalseite

M16: Säulen der Schöpfung

Wie Finger ragen die dunklen Säulen der Schöpfung vor einem türkis leuchtenden Hintergrund auf. Sie verströmen gelbe Nebelstrahlen. Die Säulen im Adlernebel sind das berühmteste Bild des Weltraumteleskops Hubble.

Bildcredit: J. Hester, P. Scowen (ASU), HST, NASA

Im Adlernebel liegen die Säulen der Schöpfung. Darin entstehen neue Sterne. Dieses Bild wurde 1995 mit dem Weltraumteleskop Hubble aufgenommen. Es zeigt gasförmige Globulen (EGGs), die verdampfen. Sie treten aus den Säulen aus molekularem Wasserstoff und Staub hervor.

Die riesigen Säulen sind Lichtjahre lang und so dicht, dass Gas in ihrem Inneren durch Gravitation kollabiert. Dabei entstehen Sterne. Am Ende jeder Säule verdampft die intensive Strahlung heller junger Sterne Materie mit geringer Dichte. Dadurch werden die Sternfabriken in den dichten EGGs freigelegt. Der Adlernebel steht in Verbindung mit dem offenen Sternhaufen M16. Er ist etwa 7000 Lichtjahre entfernt.

Die Säulen der Sternbildung wurden 2007 mit dem Weltraumteleskop Spitzer im Orbit erneut in Infrarot abgebildet. Diese Aufnahme führte zu der Vermutung, dass die Säulen vielleicht inzwischen durch eine lokale Supernova zerstört wurden. Doch das Licht dieses Ereignisses hat die Erde noch nicht erreicht.

Hand aufs Herz: Habt ihr das Bild schon einmal gesehen?

Zur Originalseite

Die Zwerggalaxie Wolf-Lundmark-Melotte (WLM)

Mitten im Bild schwebt die kleine Galaxie WLM im Sternbild Walfisch. Sie wirkt unregelmäßig und ist von rosaroten Sternbildungsregionen und blauen Sternen gesprenkelt.

Bildcredit: ESO, VST/OmegaCAM-Durchmusterung der Lokalen Gruppe

WolfLundmarkMelotte (WLM) ist nach den drei Astronomen benannt, die an ihrer Entdeckung und Erkennung beteiligt waren. WLM ist eine einsame Zwerggalaxie. Man sieht sie im großteils südlichen Sternbild Walfisch (Cetus). Sie ist etwa 3 Millionen Lichtjahre von der Milchstraße entfernt und eines der am weitesten entfernten Mitglieder unserer Lokalen Gruppe.

Vielleicht hatte WLM sogar noch nie Wechselwirkungen mit einer anderen Galaxie in der Lokalen Gruppe. Doch das einsame Inseluniversum hat viele verräterische rötliche Sternbildungsregionen und heiße, junge, bläuliche Sterne. Im Halo der kleinen Galaxie sind ältere, kühle gelbliche Sterne verteilt. Die Zwerggalaxie ist nur etwa 8000 Lichtjahre groß.

Dieses scharfe Porträt von WLM stammt von der 268-Megapixel-OmegaCAM. Sie ist am Weitwinkel-Abbildungs- und -Durchmusterungsteleskop auf dem Paranal-Observatorium der ESO montiert.

Zur Originalseite

NGC 6357: Kathedrale massereicher Sterne

Der fantastische Nebel im Bild besteht aus dunklen Strukturen und leuchtenden Nebeln. Es erinnert an eine gotische Kathedrale. Darin befinden sich die massereichsten Sterne, die wir kennen.

Bildcredit: NASA, ESA und Jesús Maíz Apellániz (IAA, Spanien); Danksagung: Davide De Martin (ESA/Hubble)

Wie viel Masse kann ein normaler Stern besitzen? Es gibt Schätzungen aus der Ferne. Anhand von Helligkeit und Standard-Sternmodellen hatte ein Stern im offenen Haufen Pismis 24 mehr als 200 Sonnenmassen. Damit wäre er einer der massereichsten Sterne, die wir kennen. Der Stern ist das hellste Objekt im Bild über der Gasfront.

Als man das Bild mit dem Weltraumteleskop Hubble genau untersuchte, zeigte sich, dass die gleißende Helligkeit von Pismis 24-1 nicht von einem einzigen Stern stammt, sondern von mindestens drei Sternen. Die Einzelsterne haben immer noch fast 100 Sonnenmassen. Damit gehören sie immer noch zu den massereicheren Sternen, die wir kennen.

Zum unteren Bildrand hin entstehen im Emissionsnebel NGC 6357 immer noch Sterne. Nahe der Mitte befinden sich dynamische Sterne. Sie brechen scheinbar aus etwas aus, das an eine gotische Kathedrale erinnert, und beleuchten einen eindrucksvollen Kokon.

Zur Originalseite

Der große Nebel in Carina

Der Carinanebel NGC 3372 im Sternbild Schiffskiel ist einer der hellsten Nebel am Himmel. Er enthält sehr massereiche Sterne und den rätselhaften Riesen Eta Carinae, der vielleicht bald als Supernova explodiert.

Bildcredit und Bildrechte: Damian Peach/SEN

In einem der hellsten Teile der Milchstraße liegt ein Nebel, in dem sehr merkwürdige Dinge geschehen. Der Nebel NGC 3372 ist als Carinanebel bekannt. Er enthält massereiche Sterne und veränderliche Nebel. Einer davon ist der Schlüssellochnebel (NGC 3324). Er ist die helle Struktur über der Bildmitte. Darin befinden sich mehrere dieser massereichen Sterne. Der Nebel hat seine Erscheinung verändert.

Der ganze Carinanebel ist mehr als 300 Lichtjahre breit. Er liegt etwa 7500 Lichtjahre entfernt im Sternbild Schiffskiel. Eta Carinae ist der energiereichste Stern im Nebel. Er war in den 1830er-Jahren einer der hellsten Sterne am Himmel, wurde dann aber dramatisch blasser. Eta Carinae ist der hellste Stern bei der Bildmitte. Er leuchtet links neben dem Schlüssellochnebel. Vielleicht explodiert Eta Carinae bald als Supernova. Röntgenbilder lassen sogar vermuten, dass ein großer Teil des Carinanebels eine regelrechte Supernovafabrik war.

Zur Originalseite

Dunkle Nebel im Stier

Dunkle Ranken aus braunem und dunklem Staub sind im Bild verteilt. Dazwischen leuchten einige Sterne, die von blauen Reflexionsnebeln umgeben sind. Andere Sterne leuchten rötlich, weil sie hinter dunklem Staub verborgen sind.

Bildbearbeitung und Bildrechte: Oliver CzernetzDaten: Digitized Sky Survey (POSS-II)

Manchmal wirkt sogar der dunkle Staub im interstellaren Raum heiter und schön. So einen Ort finden wir im Sternbild Stier. Diese Fasern liegen am Himmel zwischen dem Sternhaufen der Plejaden und dem Kaliforniennebel. Staub ist nicht dafür bekannt, dass er hell leuchtet. Stattdessen ist er opak und undurchsichtig. Er absorbiert Licht.

Bei mehreren hellen Sternen wird blaues Licht vom braunen Staub reflektiert. Andere Sterne leuchten ungewöhnlich rot, weil ihr Licht kaum durch eine Säule aus dunklem Staub dringt. Die rote Farbe bleibt übrig, nachdem das blaue Licht verteilt wurde. Wieder andere Sterne liegen hinter so dicken Staubsäulen, dass man sie hier nicht sieht.

Die Szenerie wirkt zwar heiter, doch sie zeigt eine fortlaufende Schleife aus Zerstörung und Neubildung. Denn Knoten mit genügend Masse an Gas und Staub kollabieren durch Gravitation und bilden neue Sterne. Diese Sterne bilden einerseits in ihren Atmosphären neuen Staub, andererseits zerstören sie alten Staub durch energiereiches Licht und Sternwinde.

Zur Originalseite