M27, der Hantelnebel

Mitten im Bild ist ein blauer Nebel, der von einem rosafarbenen kugelförmigen Käfig umgeben ist. Außerhalb sind zwei weitere schalenförmige Wolkenfragmente. Im Hintergrund sind Sterne verteilt.

Bildcredit und Bildrechte: Steve Mazlin

Beschreibung: Wird unsere Sonne einst so aussehen? Gut möglich. Der erste Hinweis auf die Zukunft unserer Sonne wurde 1764 unabsichtlich entdeckt. Zu dieser Zeit erstellte Charles Messier eine Liste diffuser Objekte, die nicht mit Kometen verwechselt werden sollten. Das 27. Objekt auf Messiers Liste, das nun als M27 oder Hantelnebel bekannt ist, ist ein planetarischer Nebel – jene Art von Nebeln, die unsere Sonne erzeugen wird, wenn die Kernfusion in ihrem Kern zum Erliegen kommt.

M27 ist einer der hellsten planetarischen Nebel am Himmel, man sieht ihn mit Fernglas im Sternbild Füchslein (Vulpecula). Licht braucht ungefähr 1000 Jahre, um von M27 zu uns zu gelangen. Hier wurde er in Farben abgebildet, die von Wasserstoff und Sauerstoff ausgestrahlt werden.

Das Verständnis der Physik und Bedeutung von M27 ging weit über die Wissenschaft des 18. Jahrhunderts hinaus. Auch heute noch sind viele Dinge im Zusammenhang mit bipolaren planetarischen Nebeln wie M27 rätselhaft, unter anderem der physikalische Mechanismus, der die äußere gasförmige Hülle eines massearmen Sterns ausstößt und einen im Röntgenlicht heißen Weißen Zwerg zurücklässt.

APOD in vielen Weltsprachen: arabisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, Farsi, französisch, französisch, hebräisch, indonesisch, japanisch, katalanisch, koreanisch, kroatisch, montenegrinisch, niederländisch, polnisch, russisch, serbisch, slowenisch, spanisch, tschechisch und ukrainisch

Zur Originalseite

NGC 6995, der Fledermausnebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Josep Drudis

Beschreibung: Sehen Sie die Fledermaus? Sie spukt auf dieser kosmischen Nahaufnahme des östlichen Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest – die expandierende Trümmerwolke der Todesexplosion eines massereichen Sterns.

Die Form des Schleiers ist annähernd kreisförmig und bedeckt am Himmel im Sternbild Schwan (Cygnus) fast 3 Grad. NGC 6995, der Schleiernebel, umfasst hingegen nur 1/2 Grad, das entspricht ungefähr der scheinbaren Größe des Mondes. Somit misst er in der geschätzten Entfernung des Schleiernebels 12 Lichtjahre, doch er ist beruhigende 1400 Lichtjahre vom Planeten Erde entfernt.

Auf dem Komposit aus Bilddaten, die mit Breit- und Schmalbandfiltern aufgenommen wurden, sind Emissionen von Wasserstoffatomen im Überrest rot abgebildet, die starken Emissionen von Sauerstoff- und Stickstoffatomen sind in blauen Farbtönen dargestellt. Im westlichen Teil des Schleiers liegt eine weitere jahreszeitliche Erscheinung: der Hexenbesennebel.

Zur Originalseite

NGC 3572 und die südlichen Kaulquappen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Josep Drudis

Beschreibung: Diese kosmische Himmelslandschaft zeigt leuchtendes Gas und dunkle Staubwolken zusammen mit den jungen Sternen von NGC 3572. Die Region, ein schöner Emissionsnebel und Sternhaufen am fernen Südhimmel, wird wegen seines helleren Nachbarn, dem nahen Carinanebel, von Astrofotografen häufig übersehen.

Dieses Teleskopbild ist in der geschätzten Entfernung des Haufens von 9000 Lichtjahren etwa 100 Lichtjahre breit. Links oben liegen die Sterne von NGC 3572. Sichtbares interstellare Gas und Staub sind Teil der Entstehungs-Molekülwolke des Sternhaufens. Dichte Ströme aus Materie im Nebel, die von Sternwinden und Strahlung erodiert wurden, ziehen eindeutig von den energiereichen jungen Sternen fort. Es sind wahrscheinlich Orte, an denen die Sternbildung weiterläuft, und deren Formen an die kosmischen Kaulquappen von IC 410 erinnern, die nördliche Himmelsbeobachter besser kennen.

In den nächsten zig bis hundert Millionen Jahren werden jedoch Gas und Sterne im Haufen zerstreut, teils durch die Gezeiten, aber auch durch heftige Supernovaexplosionen, welche die kurzen Leben der massereichen Haufensterne beenden.

Zur Originalseite

Nahe dem Zentrum des Lagunennebels

Das Bild zeigt einen Nebel aus lodernden blauen Nebeln, die einige Akzente in Orange aufweisen. In der Mitte ein helles Zentrum.

Bildcredit und Bildrechte: Zhuoqun Wu, Chilescope

Beschreibung: Im Lagunennebel kämpfen Sterne gegen Gas und Staub, doch die Fotografen gewinnen. Dieser fotogene Nebel ist auch als M8 bekannt. Er ist sogar ohne Fernglas im Sternbild Schütze (Sagittarius) zu sehen. Die energiereichen Prozesse der Sternbildung erzeugen nicht nur die Farben, sondern auch das Chaos.

Das Gas wird durch sehr energiereiches Sternenlicht zum Leuchten gebracht, wenn es auf interstellaren Wasserstoff sowie Spuren von Schwefel und Sauerstoff trifft. Die dunklen Staub fasern, welche M8 einschnüren, entstanden in den Atmosphären kühler Riesensterne und in den Bruchteilen von Supernovaexplosionen.

Das Licht von M8, das wir heute sehen, wurde vor etwa 5000 Jahren ausgesendet. Licht braucht ungefähr 50 Jahre, um diesen Abschnitt von M8 zu durchqueren.

Zur Originalseite

M42: Im Inneren des Orionnebels

Bildfüllend ist der Orionnebel in Magenta und hellviolett abgebildet, im Zentrum leichtet der Nebel weißlich.

Bildcredit und Bildrechte: Josep M. Drudis und Don Goldman

Beschreibung: Der große Nebel im Orion ist eine riesige, nahe gelegene Sternentstehungsregion. Er ist der vielleicht berühmteste aller astronomischen Nebel. Leuchtendes Gas umgibt heiße, junge Sterne am Rand einer gewaltigen interstellaren Molekülwolke, die nur 1500 Lichtjahre entfernt ist.

Auf diesem detailreichen Bild in zugewiesenen Farben, das durch die Emissionen in Sauerstoff und Wasserstoff betont wird, treten Fasern und Hüllen aus Staub und Gas besonders markant hervor. Der große Nebel im Orion ist mit bloßem Auge zu sehen, und zwar in der Nähe des leicht erkennbaren Gürtels aus drei Sternen im beliebten Sternbild Orion. Außer dem hellen offenen Sternhaufen, der als Trapez bekannt ist, enthält der Orionnebel viele weitere Sternentstehungsgebiete. In diesen befindet sich viel Wasserstoff, heiße junge Sterne, Proplyden und stellare Strahlen, die Materie mit hohen Geschwindigkeiten ausstoßen.

Der Orionnebel ist auch als M42 bekannt, er ist etwa 40 Lichtjahre groß und liegt im gleichen Spiralarm unserer Galaxis wie die Sonne.

Zur Originalseite

Die Geister der Kassiopeia

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Tommaso Stella

Beschreibung: Diese hellen Ränder und fließenden Formen sehen in kosmischer Größenordnung geisterhaft aus. Die farbenprächtige Himmelslandschaft ist eine Teleskopansicht im Sternbild Kassiopeia, sie zeigt die zurückgefegten kometenförmigen Wolken IC 59 (links) und IC 63.

Die Wolken sind etwa 600 Lichtjahre entfernt und keine Geister im eigentlichen Sinn. Sie verschwinden jedoch langsam unter dem Einfluss der energiereichen Strahlung des heißen, leuchtstarken Sterns Gamma Cassiopeiae. γ Cas ist der helle Stern links oben im Bild, er ist physisch nur 3 bis 4 Lichtjahre vom Nebel entfernt.

In IC 63, der etwas näher an γ Cas liegt, dominiert rotes H-alpha-Licht, das abgestrahlt wird, wenn Wasserstoffatome mit Elektronen rekombinieren, nachdem sie durch die Ultraviolettstrahlung des Sterns ionisiert wurden. Der weiter vom Stern entfernte IC 59 weist anteilig weniger H-alpha-Emissionen auf, dafür mehr von dem charakteristischen blauen Farbton von Sternenlicht, das an Staub reflektiert wird.

Das Sichtfeld umfasst mehr als 1 Grad oder 10 Lichtjahre in der geschätzten Entfernung von Gamma Cassiopeiae und seiner Freunde.

Zur Originalseite

Der Pferdekopfnebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: José Jiménez Priego

Beschreibung: Der Pferdekopfnebel ist einer der berühmtesten Nebel am Himmel. Er ist die dunkle Einkerbung im roten Emissionsnebel in der Mitte der obigen Fotografie. Die Pferdekopfstruktur ist dunkel, weil sie eine undurchsichtige Staubwolke ist, die vor dem hellen roten Emissionsnebel liegt.

Diese kosmische Wolke hat – ähnlich wie Wolken in der Erdatmosphäre – zufällig eine erkennbare Form angenommen. In vielen Tausenden Jahren werden die inneren Bewegungen der Wolke sicherlich ihre Erscheinung verändern. Die rote Farbe des Emissionsnebels entsteht, wenn Elektronen mit Protonen rekombinieren und Wasserstoffatome bilden.

Links im Bild liegt der Flammennebel, ein orangefarbiger Nebel, der auch Fasern aus dunklem Staub enthält. Links unter dem Bild des Pferdekopfnebels liegt ein bläulicher Reflexionsnebel, der vorwiegend das blaue Licht naher Sterne reflektiert.

Zur Originalseite

Der Pelikannebel in Gas, Staub und Sternen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte:  Yannick Akar

Beschreibung: Der Pelikannebel wird langsam transformiert. IC 5070, so die offizielle Bezeichnung, ist vom größeren Nordamerikanebel durch eine Molekülwolke getrennt, die von dunklem Staub gefüllt ist.

Der Pelikan wird intensiv erforscht, weil er eine besonders aktive Mischung aus Sternbildung und sich entwickelnden Gaswolken ist. Dieses Bild wurde in drei spezifischen Farben erstellt – Licht, das von Schwefel, Wasserstoff und Sauerstoff abgestrahlt wird – das kann uns helfen, diese Wechselwirkungen besser zu verstehen. Das Licht der jungen, energiereichen Sterne verwandelt das kalte Gas langsam in heißes. Die vorrückende Grenze zwischen den beiden wird als Ionisierungsfront bezeichnet und ist rechts in hellem Orange sichtbar. Übrig bleiben besonders dichte Tentakel aus kaltem Gas.

In Millionen Jahren kennt man diesen Nebel vielleicht nicht mehr als Pelikan, da das Verhältnis und die Platzierung von Sternen und Gas sicherlich etwas hinterlassen werden, das gänzlich anders aussieht.

Zur Originalseite