Muschelspiel in der GMW

Die Große Magellansche Wolke wurde mit Schmalband-Filtern aufgenommen. Dadurch wirkt es, als wären muschelförmige Gebilde im Bild verteilt.

Bildcredit und Bildrechte: John Gleason

Die Große Magellansche Wolke (GMW) ist ein faszinierender Anblick am Südhimmel. Sie wurde hier mit Schmalbandfiltern abgelichtet. Die Filter lassen nur das Licht von ionisierten Atomen von Schwefel, Wasserstoff und Sauerstoff durch.

Die Atome werden von energiereichem Sternenlicht ionisiert. Wenn sie die Elektronen wieder einfangen, strahlen sie Licht in ihrer typischen Wellenlänge ab. Dabei fallen die Elektronen in einen niedrigeren Energiezustand. Durch die Aufnahme in speziellen Farben wirkt das Falschfarbenbild der GMW, als wäre es von muschelförmigen Wolken aus ionisiertem Gas bedeckt. Darin befinden sich massereiche junge Sterne.

Starke Sternwinde und UV-Strahlung formen die leuchtenden Wolken. Man kennt sie als HII-Regionen, weil sie von den Emissionen von Wasserstoff markiert sind. Der Tarantelnebel ist die große Region mit Sternbildung oben in der Mitte. Er besteht aus vielen überlappenden Hüllen.

Die GMW ist eine Begleiterin unserer Milchstraße. Sie ist ungefähr 15.000 Lichtjahre groß und etwa 180.000 Lichtjahre entfernt. Man findet sie im Sternbild Schwertfisch (Dorado).

Zur Originalseite

Hubble zeigt die Wagenradgalaxie

Die Galaxie auf der rechten Seite erinnert an ein Wagenrad. Innen ist eine gelbe Spiralgalaxie, die außen von einem ovalen Ring umgeben ist, in dem Sterne entstehen. Links sind zwei sehr unterschiedliche kleine Galaxien.

Bildcredit: ESA, NASA, Hubble

Manche sehen hier ein Wagenrad. Die äußere Erscheinung der Galaxie rechts führte dazu, dass sie heute als Wagenradgalaxie bekannt ist. Sie ist von einer ovalen Struktur umgeben. Zwischen der Mitte und dem Oval laufen Verbindungen, die an die Speichen eines Rades erinnern. Andere erkennen hier eine komplexe Wechselwirkung zwischen Galaxien, die noch auf eine Erklärung wartet. Zusammen mit den beiden Galaxien links bildet das Wagenrad eine Galaxiengruppe. Sie ist ungefähr 400 Millionen Lichtjahre entfernt und liegt im Sternbild Bildhauer.

Der Rand der großen Galaxie misst 100.000 Lichtjahre. Darin befinden sich Regionen mit Sternbildung. Sie enthalten extrem helle, massereiche Sterne. Die ringartige Form des Wagenrades entstand durch eine gravitative Erschütterung. Sie von einer kleineren Galaxie ausgelöst, welche die durchdrang. Dabei komprimierte sie interstellares Gas und Staub. So entstand eine Sternbildungsfront, die wie eine Welle auf der Oberfläche eines Teiches nach außen wanderte.

Zur Originalseite

ALMA zeigt, wie ein Dreifachstern entsteht

Mitten im Bild schwebt eine stark verschwommene orangefarbene Scheibe mit Spiralstruktur. Sie enthält mehrere helle Flecken, vermutlich sind das Protosterne.

Bildcredit und Bildrechte: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF; Publikation: John Tobin (Univ. Oklahoma/Leiden) et al.

Hier entsteht ein Dreifachsternsystem. Es ist etwa 750 Lichtjahre entfernt und liegt in der Perseus-Molekülwolke. Noch ist es in eine staubhaltige Scheibe gehüllt. Die extreme Nahaufnahme entstand in Millimeter-Wellenlängen mit dem Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Sie zeigt zwei Protosterne, die ungefähr 61 AE voneinander entfernt sind. 1 AE ist eine Astronomische Einheit, das ist die Entfernung zwischen Erde und Sonne. Ein dritter Protostern ist ungefähr 183 AE vom zentralen Protostern entfernt.

Das Bild von ALMA zeigt auch eine deutliche Spiralstruktur. Das lässt vermuten, dass in der Scheibe mehrere protostellare Objekte entstanden sind, indem die Scheibe instabil und fragmentiert wurde. Das System ist als L1448 IRS3B katalogisiert. Sternforschende schätzen, dass es weniger als 150.000 Jahre alt ist. Die Szene der Sternbildung wurde in einer frühen Phase abgebildet. Sie ist wahrscheinlich nicht ungewöhnlich, weil fast die Hälfte aller sonnenähnlichen Sterne mindestens einen Begleiter hat.

Zur Originalseite

W5 – die Seele der Sternbildung

Das Gewirr aus leuchtenden und dunklen Staubwolken ist von Sternen durchzogen. In den dunklen Wolken können Sterne entstehen. Die Nebel liegen im Zentrum von W5, dem Seelennebel.

Bildcredit: José Jiménez Priego

Wo entstehen Sterne? Häufig in energiereichen Regionen, wo Gas und dunkler Staub in einer chaotischen Umgebung herumgestoßen werden. Hier seht ihr die hellen, massereichen Sterne beim Zentrum von W5, dem Seelennebel. Sie explodieren, verströmen energiereiche Winde und strahlen Licht ab, das durch Ionisation entsteht.

Licht und Gas strömen nach außen. Dabei verdrängen und verdampfen sie viel von dem Gas und Staub in der Umgebung. Doch hinter dichten, schützenden Knoten bleiben Säulen aus Gas zurück. Auch in den Knoten entstehen Sterne. Das Bild zeigt das Innerste von W5. Es ist ein ungefähr 1000 Lichtjahre großer Bereich voller Säulen, die Sterne bilden.

Der Seelennebel ist auch als IC 1848 katalogisiert. Er ist ungefähr 6500 Lichtjahre entfernt und liegt im Sternbild Kassiopeia, der Königin von Aithiopia. Wahrscheinlich bleibt in ein paar hundert Millionen Jahren nur ein Haufen neu entstandener Sterne übrig. Diese Sterne treiben auseinander.

Zur Originalseite

Arp 240: Hubble zeigt eine Brücke zwischen Spiralgalaxien

Zwischen diesen beiden Spiralgalaxien, die wir schräg von der Seite sehen, verläuft eine Sternenbrücke. Darin findet Sternbildung statt. Sie ist ein Hinweis auf starke Gezeitenkräfte bei einer nahen Begegnung.

Bildcredit: NASA, ESA, Weltraumteleskop Hubble; Bearbeitung und Bildrechte: Chris Kotsiopoulos

Warum läuft eine Brücke zwischen diesen beiden Spiralgalaxien? Die Brücke besteht aus Gas und Sternen. Sie ist ein klarer Hinweis, dass die beiden riesigen Sternsysteme eine Begegnung hatten. Durch die wechselseitige Gravitation erfuhren sie gewaltige Gezeiten. Zusammen sind sie als Arp 240 katalogisiert. Einzeln kennt man sie als NGC 5257 und NGC 5258.

Computermodelle der beiden Galaxien und das Alter ihrer Sternhaufen zeigen, dass sie vor erst 250 Millionen Jahren eine erste Passage aneinander vollendet haben. Die Gezeiten zogen nicht nur Materie heraus. Sie komprimierten auch das Gas. Das löste in beiden Galaxien und in der ungewöhnlichen Brücke Sternbildung aus.

Es geschieht wohl häufig, dass Galaxien verschmelzen. Arp 240 ist ein Schnappschuss. Er zeigt ein kurzes Stadiums in diesem unausweichlichen Prozess.

Das Paar Arp 240 ist ungefähr 300 Millionen Lichtjahre entfernt. Mit einem kleinen Teleskop sieht man es im Sternbild Jungfrau. Wiederholte nahe Begegnungen führen wohl am Ende zu einer Verschmelzung der beiden Galaxien. Dabei entsteht eine einzige gemeinsamen Galaxie.

Zur Originalseite

Herz- und Seelennebel

Die beiden hellen Nebel im Bild sind der Herznebel (links) und der Seelenebel (rechts) im Sternbild Cassiopeia. Hier sind sie orangerot umrandet, ihr Inneres leuchtet blau.

Bildcredit und Bildrechte: David Lindemann

Liegen Herz und Seele unserer Galaxis in der Kassiopeia? Das vielleicht nicht, aber dort leuchten zwei helle Emissionsnebel mit den Spitznamen Herz und Seele. Der Herznebel hat die offizielle Bezeichnung IC 1805. Er liegt rechts im Bild. Seine Form erinnert an ein klassisches Herzsymbol. Beide Nebel leuchten hell im roten Licht von ionisiertem Wasserstoff.

Mehrere junge offene Sternhaufen besiedeln das Bild. Sie sind hier in Blau abgebildet, wie auch die Nebelzentren. Licht braucht zirka 6000 Jahre, um uns von diesen Nebeln aus zu erreichen. Zusammen sind sie ungefähr 300 Lichtjahre breit. Untersuchungen von Sternen und Haufen wie solchen, die man in Herz– und Seelennebel findet, sollen herausfinden, wie massereiche Sterne entstehen und wie sie ihre Umgebung beeinflussen.

Zur Originalseite

NGC 7822 im Kepheus

Ein grün-blau schillernder Nebel bildet eine rundliche Struktur. In der Mitte zeichnen sich dunkle Staubwolken als Silhouetten ab.

Bildcredit und Bildrechte: Steve Cannistra (StarryWonders)

Heiße junge Sterne und kosmische Säulen aus Gas und Staub drängen sich in NGC 7822. Die leuchtende Region, in der Sterne entstehen, liegt im nördlichen Sternbild Kepheus am Rand einer riesigen Molekülwolke. Sie ist etwa 3000 Lichtjahre entfernt. Der Nebel bildet eine bunte Himmelslandschaft. Die hellen Ränder und dunklen Formen fallen auf.

Das Bild entstand aus Daten von Schmalbandfiltern. Diese Daten kartieren die Strahlung von atomarem Sauerstoff, Wasserstoff und Schwefel in blauen, grünen und roten Farbtönen. Die Kombination dieser Emissionslinien und Farben ist die bekannte Hubble-Farbpalette.

Die Energie für die Strahlung der Atome stammt von den heißen Sternen im Zentrum. Ihre gewaltigen Winde und die Strahlung formen und erodieren die dichteren Säulen. Sie räumen eine charakteristische Höhlung mitten in der Wolke frei, die Lichtjahre groß ist. Immer noch könnten in den Säulen durch Gravitationskollaps Sterne entstehen. Doch wenn die Säulen erodieren, werden Sterne, die vielleicht gerade entstehen, am Ende von ihrem Vorrat an Sternenstoff getrennt.

Das Bild ist in der geschätzten Entfernung von NGC 7822 mehr als 40 Lichtjahre breit.

Zur Originalseite

Das kosmische Netz des Tarantelnebels

Der Tarantelnebel leuchtet links oben in blauen Tönen, er ist von roten Nebelwolken umgeben. Das Bild ist auch von vielen Sternen bedeckt.

Bildcredit und Bildrechte: Josep Drudis

Es ist die größte und komplexeste Sternbildungsregion in der gesamten galaktischen Nachbarschaft. Die Region liegt in der Großen Magellanschen Wolke, das ist eine kleine Begleitgalaxie, die unsere Milchstraße umkreist. Der Name Tarantelnebel leitet sich von der spinnenförmigen Erscheinung ab. Doch diese Vogelspinne ist zirka 1000 Lichtjahre groß.

In der Entfernung des Orionnebels in der Milchstraße wäre sie am Himmel etwa 30 Grad breit, das sind 60 Vollmonde. Der Orionnebel ist die erdnächste Sternschmiede. Er ist nur 1500 Lichtjahre entfernt. Das Bild zeigt faszinierende Details im Nebel. Es wurde in Farben erstellt, die von Wasserstoff und Sauerstoff abgestrahlt werden.

Der Tarantelnebel ist auch NGC 2070 bekannt. Seine spinnenartigen Arme sind in Blau abgebildet. Sie umgeben einen Sternhaufen, der einige der hellsten, massereichsten Sterne enthält, die wir kennen. Massereiche Sterne brennen schnell und vergehen früh. Daher ist es wenig überraschend, dass bei der kosmischen Tarantel der Schauplatz der erdnächsten Supernova in jüngster Vergangenheit liegt.

Zur Originalseite