Der Tarantelnebel

Die rötliche Wolke im Bild besteht aus verworrenen Fasern. In der Mitte leuchtet sie heller. Im ganzen Nebel sind Blasen verteilt. Der Hintergrund ist von kleinen Sternen dicht übersät.

Bildcredit und Bildrechte: Ignacio Diaz Bobillo

Der Tarantelnebel ist eine riesige Region, in der Sterne entstehen. Er ist etwa 180.000 Lichtjahre entfernt und liegt in der Große Magellansche Wolke. Diese kleine Galaxie ist eine Begleiterin der Milchstraße. Das kosmische Spinnentier ist etwa tausend Lichtjahre breit. Es ist die größte, gewaltigste Region mit Sternbildung in der ganzen Lokalen Gruppe. Für dieses Bild kartierten Schmalbandfilter die Emissionen ionisierter Atome von Wasserstoff und Sauerstoff.

Die Tarantel ist als NGC 2070 katalogisiert. Der zentrale junge Haufen R136 besteht aus massereichen Sternen. Intensive Strahlung, Sternwinde und Erschütterungen durch Supernovae in R136 liefern die Energie für das Leuchten im Nebel. Sie formen auch die spinnenartigen Fasern. Um die Tarantel sind weitere Gebiete mit Sternbildung verteilt. Darin befinden sich junge Sternhaufen, Fasern und leer gefegte blasenförmige Wolken.

Das Bild zeigt rechts unten sogar den Schauplatz der nächstliegenden Supernova der Neuzeit, SN 1987A. Das reichhaltige Sichtfeld umfasst etwa 1 Grad oder zwei 2 Vollmonde im südlichen Sternbild Schwertfisch (Dorado). Wenn der Tarantelnebel näher wäre, sagen wir 1500 Lichtjahre entfernt im lokalen, Sterne bildenden Orionnebel, würde er den halben Himmel bedecken.

Beobachtet den Leoniden-Meteorstrom

Zur Originalseite

Unter der Galaxie

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Yuri Beletsky (Carnegie Las Campanas Observatory, TWAN)

Die Große Magellansche Wolke ist eine Galaxie. Sie begleitet die Milchstraße. Auf dieser Aufnahme, die mit Teleskop entstand, steht sie über dem südlichen Horizont. Vorne steht das Las-Campanas-Observatorium auf der Erde. Die kleine Galaxie leuchtet im September am dunklen Himmel in der chilenischen Atacama. Sie ist eindrucksvolle 10 Grad breit. Das entspricht 20 Vollmonden nebeneinander.

Das Panorama entstand mit einer empfindlichen Digitalkamera. Es zeichnete auch ein blasses Nachthimmelslicht auf, das alles durchdringt. Für das Auge ist es unsichtbar. Die irdischen Lichter vorne sind scheinbar hell. Doch eigentlich sind sie die sehr schwache Beleuchtung der Wohnhäuser für Astronominnen und Techniker am Observatorium. Die flache Bergkuppe am Horizont unter der Galaxie ist der Las-Campanas-Gipfel. Dort entsteht das Giant Magellan Telescope.

Zur Originalseite

LIGO-Virgo GW170814 Himmelskarte

Auf der Karte des ganzen Himmels sind die Messungen von drei Gravitationswellen-Detektoren markiert, die ein Ereignis beobachteten. Rechts krümmt sich der Bogen der Milchstraße. Unten in der Mitte liegen die Magellanschen Wolken.

Illustrationscredit: LIGOVirgo-Arbeitsgemeinschaft; Optische Himmelsdaten: A. Mellinger

Detektoren für Gravitationswellen sind über den Planeten Erde verteilt. Drei davon meldeten gleichzeitig eine Beobachtung von Wellen in der Raumzeit. Es ist erst das vierte Mal, dass die Verschmelzung eines Binärsystems Schwarzer Löcher im fernen Universum entdeckt wurde. Das Ereignis wurde GW170814 benannt, weil es am 14. August 2017 gemessen wurde.

Die Beobachtungsorte von LIGO lagen in Hanford in Washington und Livingston in Louisiana. Auch das Virgo-Observatorium bei Pisa in Italien war daran beteiligt. Es ging erst kürzlich in Betrieb. Das Signal entstand kurz bevor zwei Schwarze Löcher verschmolzen. Sie hatten 31 und 25 Sonnenmassen und sind etwa 1,8 Milliarden Lichtjahre entfernt.

Man verglich die Zeit, zu der die Gravitationswellen an den drei Standorten gemessen wurde. Eine Region am Himmel stimmt mit den Signalen aller drei Detektoren überein. Sie liegt im Sternbild Eridanus. Die Karte des ganzen Himmels markiert sie mit einem gelben Umriss. Die Projektion zeigt auch den Bogen unserer Milchstraße.

Weil drei Detektoren beteiligt waren, konnte man die Lage und Herkunft der Gravitationswellen viel besser bestimmen. So konnten Observatorien, die elektromagnetische Strahlung beobachten, danach den Ort schneller beobachten. Sie suchten nach Signalen, die vielleicht mit dem Ereignis einhergingen. Weil der Virgo-Detektor die Beobachtung ergänzte, konnte man auch die Polarisation der Gravitationswellen messen. Das kann Vorhersagen von Einsteins Allgemeiner Relativitätstheorie bestätigen.

Zur Originalseite

Die Milchstraße über chilenischen Vulkanen

Über dem Rand einer Caldera wölbt sich die Milchstraße. Am Himmel leuchten Antares, der Gum-Nebel, die Große Magellansche Wolke und das Sternbild Kreuz des Südens.

Bildcredit und Bildrechte: Carlos Eduardo Fairbairn

Manchmal imitiert der Himmel die Landschaft. Dieses Bildes entstand im Mai 2017 in der Atacama in Chile. Vorne ist der eingesunkene Rand der Caldera eines erloschenen Vulkans. Oben spiegelt der Bogen der Milchstraße poetisch die Senke darunter. Viele berühmte Objekte sprenkeln die nächtliche Aussicht im Süden.

Ganz links ist das Zentrum der Milchstraße. Auch der helle orangefarbene Stern Antares leuchtet links. Am oberen Rand des Bogens ist das Sternbild Kreuz des Südens. Der rote Gum-Nebel schimmert ganz rechts. Über dem Horizont teilt die Große Magellansche Wolke die beiden fernen Vulkangipfel. Sie ist die größte Begleitgalaxie unserer Milchstraße.

Zur Originalseite

Die N44-Superblase

Im Bild leuchtet eine violette Nebelwolke, in ihrer Mitte ist ein riesiges Loch. Darin sind die Sterne dichter verteilt als außen herum.

Bildcredit und Bildrechte: Gemini Obs., AURA, NSF

Wie entstand dieses gewaltige Loch? Der weite Emissionsnebel N44 liegt in unserer Nachbargalaxie, der Großen Magellanschen Wolke. Er hat ein 250 Lichtjahre großes Loch. Noch ist nicht klar, warum.

Möglich ist, dass Teilchenwinde von massereichen Sternen in der Blase das leuchtende Gas hinaustreiben. Doch es zeigte sich, dass das im Widerspruch zur gemessenen Geschwindigkeit der Sternwinde steht. Eine andere Möglichkeit ist, dass die Hüllen alter Supernovae, die sich ausdehnen, die ungewöhnliche Weltraumhöhle geformt haben. Kürzlich kam ein unerwarteter Hinweis auf Gas, das heiße Röntgenstrahlen abgibt. Es strömt aus der N44-Superblase.

Dieses Bild wurde vom riesigen 8-Meter-Teleskop Gemini-Süd aufgenommen. Das Teleskop steht auf dem Cerro Pachon in Chile. Die Aufnahme entstand in drei spezifischen Farben.

Zur Originalseite

Kalaharihimmel

Das Panorama entstand aus lang belichteten Aufnahmen aus der Kalahari in Botswana. Es zeigt unter anderem die Barnardschleife, die Magellanschen Wolken und die Plejaden.

Bildcredit und Bildrechte: Petr Horálek

Ihr wacht in der Kalahari auf. Sie liegt in Botswana auf dem afrikanischen Kontinent. Dann geht ihr aus dem Zelt, stellt eure Kamera auf und fotografiert lang belichtete Aufnahmen von Land und Himmel. Was könnt ihr sehen? Viel Staub treibt herum, und zufällig steht da eine Akazie. Daneben erhascht ihr viele Himmelswunder. Sie wurden hier im September 2015 abgebildet.

Einige davon sind das Zentralband unserer Milchstraße, der Sternhaufen der Plejaden, die Barnardschleife und die Große und die Kleine Magellansche Wolke. Die meisten davon verblassten zwar im Morgenlicht, doch sie wurden bald darauf von einer partiellen Sonnenfinsternis übertroffen.

Vortrag: APOD-Herausgeber am 30. Juni in Prag

Zur Originalseite

Rätselhafte Ringe der Supernova 1987A

Im Bild leuchtet ein Objekt, das von der Supernova-Explosion 1987 in der Großen Magellanschen Wolke übrig blieb. Um ein schwächeres Objekt verläuft ein heller, gepunkteter Ring, außen herum verlaufen zwei schwache rote Ringe in Form einer 8.

Bildcredit: ESA/Hubble, NASA

Wie entstehen die seltsamen Ringe der Supernova 1987A? Vor 30 Jahren brach in der Großen Magellanschen Wolke die hellste Supernova der jüngsten Geschichte aus. Dieses Bild zeigt ein Objekt mitten in den Überresten der gewaltigen Sternexplosion.

Seltsame äußere Ringe um das Zentrum sehen aus wie eine liegende 8. Alle paar Jahre werden sie von großen Teleskopen wie dem Weltraumteleskop Hubble beobachtet. Trotzdem bleibt ihr Ursprung ein Rätsel. Dieses Bild von Hubble entstand 2011. Es zeigt den Überrest SN 1987A.

Von der Supernova blieb ein unsichtbarer Neutronenstern übrig. Theorien, wie die Ringe entstanden sein könnten, vermuten gerichtete Ströme aus dem Neutronenstern. Eine andere Möglichkeit ist eine Wechselwirkung zwischen dem Wind des Vorläufersterns mit dem Gas, das vor der Explosion ausströmte.

Zur Originalseite

Eine aktive Nacht über den Magellan-Teleskopen

Bildcredit und Bildrechte: Yuri Beletsky (Carnegie Las Campanas Observatory, TWAN); Musikrechte und Lizenz: Nachthimmellicht von Club 220

Der Nachthimmel ändert sich ständig. Diese Änderungen traten Ende Juni 2014 im Laufe von sechs Stunden hinter den Magellan-Teleskopen auf. Die Teleskope haben 6,5 Meter große Spiegel, sie stehen am Las-Campanas-Observatorium in Chile. Anfangs trat am Horizont rotes Leuchten auf. Es ist Nachthimmellicht und entsteht durch eine leichte Abkühlung der Luft in großer Höhe. Die Bänder aus Nachthimmellicht strahlen Licht in spezifischen Farben ab. Man sieht sie im ganzen Zeitraffervideo.

Zu Beginn der Nacht leuchten links Scheinwerfer. Satelliten schießen vorbei, sie umkreisen die Erde und reflektieren Sonnenlicht. Eine lange, dünne Wolke zieht langsam über den Himmel. Links geht die Große Magellansche Wolke auf. Das ausgedehnte zentrale Band unserer Milchstraße wölbt und dreht sich, während die Erde rotiert. Die Magellan-Teleskope schwenken und erstarren wieder. Dabei erforschen sie zuvor bestimmte Stellen am Nachthimmel. Jede Nacht ändert sich jeder Himmel auf andere Weise. Doch die Phänomene sind meist die gleichen.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite