Webb zeigt den interstellaren Strahl HH 49

Eine Gaswolke türmt sich diagonal im Bild auf. Ihre äußere Hülle ist rot leuchtend dargestellt.An ihrer Spitze befindet sich eine Spiralgalaxie, die jedoch weit hinter der Wolke liegt.

Bildcredit: NASA, ESA, CSA, STScI, JWST

Was befindet sich am Ende dieses interstellaren Jets? Betrachten wir zunächst den Strahl selber: Er wird von einem Sternsystem ausgestoßen, das sich gerade erst bildet, und ist als Herbig-Haro 49 (HH 49) katalogisiert. Das Sternsystem, das diesen Jet ausstößt, ist nicht sichtbar – es befindet sich rechts unten außerhalb des Bildes.

Die komplexe, spitz zulaufende Struktur, die auf diesem Infrarotbild vom James Webb Space Telescope (JWST) gezeigt wird, beinhaltet noch einen weiteren Jet, der als HH 50 katalogisiert ist. Die schnellen Jet-Partikel treffen auf das umgebende interstellare Gas und bilden Stoßwellen, die im Infrarotlicht hell leuchten. Sie sind hier als rotbraune Strukturen dargestellt.

Das JWST-Bild hat auch das Rätsel um das ungewöhnliche Objekt an der Spitze von HH 49 gelöst: Es handelt sich um eine weit entfernte Spiralgalaxie. Das blaue Zentrum besteht daher nicht aus einem Stern, sondern aus vielen, und die umgebenden Kreisringe sind eigentlich Spiralarme.

Durchs Universum springen: APOD-Zufallsgenerator

Zur Originalseite

Webb zeigt Jupiter mit Ring in Infrarot

Jupiter im Infraroten, aufgenommen vom James-Webb-Weltraumteleskop. Zu sehen sind Wolken, der Große Rote Fleck, der hell erscheint, und ein auffälliger Ring um den Riesenplaneten.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitung und Lizenz: Judy Schmidt

Warum hat Jupiter Ringe? Als 1979 die NASA-Raumsonde Voyager 1 am Planeten vorbeiflog, entdeckte sie seinen Hauptring. Sein Ursprung blieb damals ein Rätsel.

Die NASA-Sonde Galileo umrundete den Jupiter von 1995 bis 2003. Ihre Daten zeigten, dass dieser Ring durch Meteoriteneinschläge auf kleinen nahe gelegenen Monden entstanden ist. Trifft ein kleiner Meteoroid beispielsweise auf den winzigen Metis, dann bohrt er sich in den Mond. Dabei verdampft und schleudert er Staub und Schmutz in eine Umlaufbahn um den Jupiter.

Das James-Webb-Weltraumteleskop hat dieses Bild von Jupiter im Infraroten aufgenommen. Es zeigt neben Jupiter und seinen Wolken auch seinen Ring. Im Bild sehr ihr außerdem den Großen Roten Fleck (GRF) – vergleichsweise hell auf der rechten Seite. Auch den großen Mond Europa könnt ihr links in der Mitte des Lichtkreuzes erkennen. Seinen Schatten findet ihr neben dem GRF. Einige Details auf dem Bild sind noch nicht vollständig erforscht. Dazu zählt die scheinbar getrennte Wolkenschicht am rechten Rand des Planeten.

Zur Originalseite

Protosterne in Lynds 483

Die hochaufgelöste Ansicht des Webb Teleskops zeigt die Jets in dramatischen Details als sich windende Schockfronten, die sich ausdehnen und mit langsamerem, dichterem Material kollidieren.

Bildcredit: NASA, ESA, CSA

Diese Nahinfrarot-Aufnahme des Weltraumteleskops James Webb zeigt einen beeindruckenden sanduhrförmigen Nebel. In einem einzigen Pixel nahe der Mitte verbergen sich zwei Protosterne. Das Sternsystem, das hier entsteht, liegt in einer dichten Molekülwolke. Es ist als Lynds 483 katalogisiert. Das Sternsystem ist etwa 650 Lichtjahre entfernt. Es liegt im Sternbild Serpens Cauda (Schwanz der Schlange).

Die spektakulären bipolaren Ströme stammen von den kollabierenden Protosternen. Die Protosterne stoßen seit mehr als zehntausend Jahren gebündelte energiereiche Materiestrahlen aus.

Die hochaufgelöste Ansicht des Webb-Teleskops zeigt dramatischen Details der Ströme als sich windende Stoßfronten, die sich ausdehnen. Sie kollidieren mit langsamerem, dichterem Material. Die Nahaufnahme der sternbildenden Region im Dunkelnebel Lynds 483 ist weniger als ein halbes Lichtjahr breit.

Heute: Totale Mondfinsternis

Zur Originalseite

HH 30: Sternsystem mit entstehenden Planeten

In einem dunklen Feld befindet sich in der Mitte eine einzelne, bunte, verschwommene Struktur. Rote Strahlen breiten sich vom Zentrum nach oben und unten aus. Eine dunkle Scheibe bedeckt das Zentrum. Blaue Ausströmungen treten auf beiden Seiten der horizontalen Scheibe auf. Links unten breitet sich eine größere blaue Ausströmung aus.

Bildcredit: James-Webb-Weltraumteleskop, ESA, NASA und CSA, R. Tazaki et al.

Wie entstehen Sterne und Planeten? Das James-Webb-Weltraumteleskop hat im protoplanetaren System Herbig-Haro 30 in Zusammenarbeit mit Hubble und dem erdgebundenen ALMA neue Hinweise gefunden.

Die Beobachtungen zeigen unter anderem, dass große Staubkörner stärker in einer zentralen Scheibe konzentriert sind, wo sie Planeten bilden können. Das vorgestellte Bild von Webb zeigt viele Merkmale des aktiven HH-30-Systems.

In der Mitte ist eine dunkle, staubreiche Scheibe zu sehen, die das Licht des Sterns oder der Sterne, die sich dort noch bilden, abschirmt. Jets von Teilchen (in Rot dargestellt) werden vertikal nach oben ausgestoßen. Blaureflektierender Staub ist in einem parabolischen Bogen über und unter der zentralen Scheibe zu sehen, obwohl derzeit nicht bekannt ist, warum links unten ein Schweif erscheint.

Die Untersuchung der Planetenentstehung in HH 30 kann den Astronomen helfen, besser zu verstehen, wie sich die Planeten in unserem eigenen Sonnensystem, einschließlich unserer Erde, einst gebildet haben.

Zur Originalseite

Webb zeigt Staubschutzhüllen um WR 140

Ein heller Fleck in der Mitte ist von vielen konzentrischen Ringen umgeben. Die Ringe sind fast – aber nicht ganz – kreisrund.

Bildcredit: NASA, ESA, CSA, STScI, E. Lieb (U. Denver), R. Lau (NSF NOIRLab), J. Hoffman (U. Denver)

Was sind diese seltsamen Ringe? Die staubreichen Ringe sind wahrscheinlich 3D-Hüllen – aber wie sie entstanden sind, bleibt ein Forschungsthema. Wo sie entstanden sind, ist gut bekannt: in einem Doppelsternsystem, das etwa 6000 Lichtjahre entfernt im Sternbild Schwan (Cygnus) liegt – ein System, das von dem Wolf-Rayet-Stern WR 140 dominiert wird.

Wolf-Rayet-Sterne sind massereich, hell und für ihre stürmischen Winde bekannt. Sie sind auch dafür bekannt, dass sie schwere Elemente wie Kohlenstoff erzeugen und verbreiten. Kohlenstoff ist ein Baustein des interstellaren Staubs. Der andere Stern im Doppelsternsystem ist ebenfalls hell und massereich, aber nicht so aktiv. Die beiden großen Sterne bewegen sich auf einer länglichen Umlaufbahn und nähern sich einander etwa alle acht Jahre. Bei der größten Annäherung nimmt die Röntgenemission des Systems zu, ebenso wie der in den Weltraum ausgestoßene Staub, der eine weitere Hülle bildet.

Dieses InfrarotBild des Webb-Weltraumteleskops löst mehr Details und mehr Staubschalen auf als je zuvor. Bilder, die über mehrere Jahre hinweg aufgenommen wurden, zeigen, dass sich die Schalen nach außen bewegen.

Zur Originalseite

Supernovaüberrest Cassiopeia A

Vor einem dunklen Sternenhimmel mit vielen bläulich leuchtenden Sternen ist eine ringförmige Wolke zu erkennen. Einige Bereiche sind rötlich und knotig, andere sind weißlich und rauchähnlich.

Bildcredit: NASA, ESA, CSA, STScI; D. Milisavljevic (Purdue Universität), T. Temim (Princeton Universität), I. De Looze (Universität Gent)

Massereiche Sterne haben eine spektakuläre Existenz. Sie entstehen, wenn riesige kosmische Wolken unter dem Einfluss der Schwerkraft kollabieren. Dann beginnt die Kernfusion, die in den Kernen der Sternen schwere Elemente erzeugt.

Die schwersten Sterne schleudern die so angereicherte Materie nach nur wenigen Millionen Jahren in den Raum zwischen den Sternen zurück. Dort kann die Sternentstehung erneut beginnen.

Diese sich ausdehnende Wolke trägt die Bezeichnung Cassiopeia A. Sie ist ein Beispiel für diese letzte Phase der Existenz eines Sterns und entstand in einer Supernova-Explosion. Sie leuchtete vor etwa 350 Jahren am irdischen Himmel auf. Es dauerte 11.000 Jahre, bis ihr Licht uns erreichte.

Dieses scharfe Bild hat das James-Webb-Weltraumteleskop mit im nahen Infrarot aufgenommen. Es zeigt den Überrest der Supernova mit den noch heißen Filamente und Knoten. Die weißliche, rauchähnliche äußere Hülle ist die sich ausbreitende Stoßwelle der Explosion. Sie hat einen Durchmesser von etwa 20 Lichtjahren. Detaillierte Bilder des Weltraumteleskops zeigen in der Umgebung der gewaltigen Sternexplosion einige ihrer Lichtechos.

Zur Originalseite

Kollidierende Spiralgalaxien von Webb und Hubble

Zwei Galaxien, die an Augen erinnern, kollidieren. Sie sind von leuchtendroten Wolken strukturiert.

Bildcredit: NASA, ESA, CSA, STScI

In einigen Milliarden Jahren wird nur noch eine dieser beiden Galaxien übrig sein. Bis dahin werden sich die Spiralgalaxien NGC 2207 (im Bild rechts) und IC 2163 (im Bild links) langsam gegenseitig zerreißen. Dabei entstehen Gezeiten in der Materie, Stoßfronten im Gas, dunkle Staubbahnen, Ausbrüche von Sternentstehung und Ströme von ausgestoßenen Sternen.

Dieses Bild ist aus Hubble-Aufnahmen im sichtbaren Licht sowie aus Webb-Aufnahmen im Infrarotlicht zusammengesetzt. Die Farben wurden nach wissenschaftlichen Aspekten zugeordnet. Laut Vorhersage aus der astronomischen Forschung wird NGC 2207 letztendlich IC 2163 ganz in sich aufnehmen.

Ihre jüngste Begegnung erreichte vor etwa 40 Millionen Jahren den Höhepunkt. Dabei schwingt die kleinere Galaxie im Gegenuhrzeigersinn herum und befindet sich jetzt etwas hinter der größeren Galaxie. Der Abstand zwischen Sternen ist so riesig, dass bei der Kollision von Galaxien die Sterne normalerweise nicht kollidieren.

Zur Originalseite

Die Sombrero-Galaxie von Webb und Hubble

Das zweigeteilte Bild zeigt die Sombrerogalaxie M104 im Sternbild Jungfrau. Oben ist eine Abbildung des Weltraumteleskops Webb in Infrarot, sie ist blau gefärbt. Unten ist ein Bild des Weltraumteleskops Hubble in sichtbarem Licht.

Bildcredit: NASA, ESA, CSA, STScI, Hubble-Vermächtnis-Projekt (STScI, AURA)

Dieser schwebende Ring ist so groß wie eine Galaxie. Er ist sogar eine Galaxie – zumindest ein Teil davon. Er gehört zur fotogenen Sombrero-Galaxie, einer der größten Galaxien im nahe gelegenen Virgo-Galaxienhaufen. Das dunkle Band aus Staub ist im unteren Bild im sichtbaren Licht dargestellt. Es verdeckt den mittleren Teil der Sombrero-Galaxie. In Infrarotlicht (oberes Bild) leuchtet es hell.

Das obere Bild wurde kürzlich mit dem James-Webb-Weltraumteleskop (JWST) aufgenommen und gestern veröffentlicht. Es zeigt das infrarote Leuchten in Falschfarben-Blau. Das obere Bild ist ein Archivbild des Weltraumteleskops Hubble in sichtbarem Licht.

Die Sombrerogalaxie ist auch als M104 bekannt. Sie ist etwa 50.000 Lichtjahre breit und ist 28 Millionen Lichtjahre entfernt. M104 sieht man mit einem kleinen Teleskop im Sternbild Jungfrau (Virgo).

Zur Originalseite