Das Grinsen der Gravitation

Mitten im Bild leuchten Galaxien, die von einem violett leuchtenden Nebel umgeben sind. Weitere Galaxien, die zu Bögen verzerrt sind, umgeben den Nebel. Alles zusammen lässt das Gebilde wie ein lächelndes Gesicht erscheinen.

Bildcredit: Röntgen – NASA / CXC / J. Irwin et al.; Optisch – NASA/STScI

Albert Einstein publizierte die Allgemeine Relativitätstheorie vor mehr als 100 Jahren. Sie sagte den Effekt der Gravitationslinsen vorher. Dieser verleiht fernen Galaxien so eine wunderliche Erscheinung, wenn man sie auf Bildern betrachtet, die mit den Spiegeln der Weltraumteleskope Chandra und Hubble aufgenommen wurden. Sie zeigen eine Galaxiengruppe in Röntgen- und sichtbarem Licht.

Die Gruppe hat den Spitznamen Grinsekatzen-Galaxiengruppe. Vielsagende Bögen rahmen die beiden großen elliptischen Galaxien der Gruppe. Die Bögen sind Bilder ferner Galaxien im Hintergrund. Die Verteilung der Gravitationsmasse in der vorderen Gruppe krümmt sie. Diese Masse besteht vorwiegend aus Dunkler Materie.

Die beiden großen elliptischen „Augen“-Galaxien sind die hellsten in der Gruppe, die verschmelzen. Die relative Geschwindigkeit der Kollision beträgt fast 1350 km/s. Sie erhitzt das Gas auf Millionen Grad. Dabei entsteht das violett gezeigte Leuchten in Röntgenlicht. Neugierig auf die Verschmelzung der Galaxiengruppe? Die Grinsekatze lächelt im Sternbild Große Bärin. Sie ist etwa 4,6 Milliarden Lichtjahre entfernt.

Zur Originalseite

Vier Bilder eines Quasars umgeben eine Galaxienlinse

Zwischen gelb leuchtenden Galaxien leuchtet ein seltsames Objekt. Ein Ring mit vier hellen Lichtern, die ein Kreuz bilden, umgibt ein weniger helles Objekt. Das Objekt in der Mitte ist eine Gravitationslinse für einen Quasar.

Bildcredit: ESA/Hubble, NASA, Sherry Suyu et al.

Das Seltsame an dieser Gruppe aus Lichtern ist: Vier davon sind derselbe ferne Quasar. In der Mitte der Quasarbilder liegt nämlich eine Galaxie im Vordergrund, die als unruhige Gravitationslinse wirkt. Ihr seht sie hier. Vielleicht noch seltsamer ist, dass man schätzen kann, mit wie schnell das Universum expandiert, indem man das Flackern des Quasars im Hintergrund beobachtet. Denn die Abläufe des Flackerns nehmen zu, wenn die Geschwindigkeit der Expansion steigt.

Das Verrückteste ist vielleicht, dass dieser mehrfach abgebildete Quasar ein Hinweis auf ein Universum ist, das etwas schneller expandiert, als man mit verschiedenen Methoden, die für das frühe Universum gelten, schätzte. Das ist so, weil … nun ja, niemand weiß, warum.

Mögliche Gründe gibt es viele: eine unerwartete Verteilung Dunkler Materie, ein unerwarteter Gravitationseffekt oder etwas ganz anderes. Vielleicht klären künftige Beobachtungen und Analysen diese Unklarheiten, die bei diesem und ähnlich gebrochenen Quasarbildern bestehen.

Zur Originalseite

Polarring-Galaxie NGC 660

Zwischen lose verteilten Sternen und ein paar kleinen Galaxien schwimmt eine verzerrte Galaxie, die von einem Ring umgeben ist. Vor der hellen Scheibe verlaufen markante dunkle Staubbahnen.

Bildcredit und Bildrechte: CHART32-Team, BearbeitungJohannes Schedler

Dieser kosmische Schnappschuss zeigt die Galaxie NGC 660. Sie ist mehr als 40 Millionen Lichtjahre entfernt und schwimmt im Sternbild Fische. Die seltsame Erscheinung von NGC 660 markiert sie als Polarring-Galaxie. Diese seltene Galaxienart hat eine beträchtliche Population aus Sternen, Gas und Staub, die in Ringen kreisen. Diese Ringe sind stark zur Ebene der Galaxienscheibe geneigt.

Die bizarre Anordnung entstand vielleicht zufällig, als eine Scheibengalaxie Materie von einer Galaxie einfing, die vorbeizog. Dabei wurden Teile eingefangen und am Ende in einen rotierenden Ring gezogen. Die gewaltige gravitative Wechselwirkung führte in diesem Fall zu den Myriaden rötlicher Regionen mit Sternbildung. Sie sind im Ring um NGC 660 verteilt.

Der Polarring macht es möglich, die Form des sonst unsichtbaren Hofes aus Dunkler Materie zu erforschen. Dazu berechnet man, wie sich die Gravitation der Dunklen Materie auf die Rotation von Ring und Scheibe auswirkt. Der Ring um NGC 660 ist breiter als die Scheibe und reicht über 50.000 Lichtjahre.

Zur Originalseite

Die Materie des Geschoßhaufens 1E 0657-558

Mitten im Bild liegt der Geschoßhaufen, er ist von Sternen und Galaxien umgeben. Zwei rote Wolken zeigen Gas, das in Röntgenlicht leuchtet. Außen sind zwei blaue Wolken, sie zeigen die Verteilung der Dunklen Materie, falls es sie gibt.

Bildcredit: Röntgen: NASA/CXC/CfA/ M. Markevitch et al.; Gravitationslinsenkarte: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al.; Optisch: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.

Was ist mit dem Geschoßhaufen los? Der massereiche Galaxienhaufen (1E 0657-558) verzerrt Galaxien im Hintergrund durch Gravitationslinsen. Das gilt als starkes Indiz für die führende Theorie, nämlich dass es darin Dunkle Materie gibt.

Doch aktuelle Analysen zeigen, dass es eine weniger beliebte Möglichkeit gibt. Sie geht von veränderlicher Gravitation aus. Das könnte das Spiel der Kräfte im Haufen ohne Dunkle Materie erklären. Diese Möglichkeit bietet auch ein Szenario für die Entstehung, das manche für wahrscheinlicher halten. Beide wissenschaftliche Hypothesen wetteifern um die Erklärung der Beobachtungen. Gibt es nun unsichtbare Materie oder modifizierte Gravitation?

Die Diskussion ist spannend. Sie ist nämlich ein gutes Beispiel dafür, wie die Existenz Dunkler Materie die Einfachheit der Theorie mit veränderter Gravitation zunichte machen würde. Der Streit um den Geschoßhaufen wird in naher Zukunft wahrscheinlich fortgeführt, wenn es neue Beobachtungen, Analysen und Simulationen mit Computern gibt.

Für das Bild wurden Daten von Hubble, Chandra und Magellan kombiniert. Rot zeigt die Röntgenstrahlung, die von heißem Gas ausgeht. Die vermutete Verteilung der getrennten Dunklen Materie ist blau abgebildet.

Zur Originalseite

Die geflockte Spiralgalaxie NGC 4414

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, W. Freedman (U. Chicago) et al. und das Hubble-Nachlass-Team (AURA/STScI), SDSS Bearbeitung: Judy Schmidt

Wie viel Masse ist in flockigen Spiralen versteckt? Dieses Bild zeigt die wolkige Spiralgalaxie NGC 4414 in Echtfarben. Es wurde mit dem Weltraumteleskop Hubble fotografiert und soll diese Frage beantworten. Wolkige Spiralen sind Galaxien ohne klar definierte Spiralarme. Sie sind eine häufige Galaxienart. NGC 4414 ist eine der nächstgelegenen.

Sterne und Gas beim sichtbaren Rand von Spiralgalaxien umkreisen das Zentrum rasend schnell. Es muss eine große Menge unsichtbarer Dunkler Materie vorhanden sein, die diese Galaxien durch Gravitation zusammenhält.

Wenn wir verstehen, wie Materie und Dunkle Materie in NGC 4414 verteilt sind, hilft das, den Rest dieser Galaxie zu kalibrieren. Davon abgeleitet kann man alle flockigen Spiralen besser berechnen. Wenn man weiters die Entfernung zu NGC 4414 genau bestimmt, kann man damit die kosmologische Entfernungsskala im gesamten sichtbaren Universum eichen.

Zur Originalseite

Hubble zeigt die Sonnenblumengalaxie M63

Das Zentrum der Sonnenblumengalaxie M63 erinnert hier an einen kosmischen Mahlstrom. Die Spiralarme sind von dunklen Staubwolken akzentuiert und von blauen Sternhaufen gesprenkelt. In der Mitte leuchtet die Galaxie gelb.

Bildcredit: ESA, NASA, Hubble

Die Sonnenblumengalaxie M63 ist eine der helleren Spiralgalaxien am nördlichen Himmel. Sie ist auch als NGC 5055 katalogisiert. Mit einem kleinen Teleskop findet man sie im Sternbild Jagdhunde (Canes Venatici). Dieses Bild des Weltraumteleskops Hubble zeigt das Zentrum von M63 mit langen, gewundenen Spiralarmen.

Das blaue Leuchten stammt von wenigen hellen, jungen Sternen. Die Emissionsnebel aus ionisiertem Wasserstoff leuchten rötlich. Dazwischen liegen viele Fasern aus dunklem Staub. Es gibt Wechselwirkungen durch Gravitation zwischen M63, M51 (der Strudelgalaxie) und mehreren kleineren Galaxien. Licht braucht ungefähr 35 Millionen Jahre von M63 bis zu uns. Quer durch die Spiralgalaxie braucht das Licht 60.000 Jahre.

Die Sterne in den äußeren Regionen der Sonnenblumengalaxie kreisen so schnell um das Zentrum, dass sie angesichts der sichtbaren Materie in den Weltraum hinausfliegen müssten, wenn man normale Gravitation voraussetzt. Doch die Sterne bleiben in der Galaxie. Das ist ein Hinweis auf eine unsichtbare Dunkle Materie. Sie hält die Sterne durch Gravitation zurück.

Zur Originalseite

Galaxienhaufen Abell S1063 und jenseits davon

Zwischen den Galaxien des Haufens Abell S1063 im Sternbild Kranich verlaufen gekrümmte blaue Bögen. Es sind Bilder von Galaxien, die viel weiter entfernt sind. Die Bögen entstehen durch den Gravitationslinseneffekt.

Bildcredit: NASA, ESA, Jennifer Lotz (STScI)

Die Galaxien im massereichen Haufen Abell S1063 sind etwa 4 Milliarden Lichtjahre entfernt. Diese scharfe Aufnahme stammt vom Weltraumteleskop Hubble. Die Galaxien sind dicht gedrängt. Doch die blassen bläulichen Bögen sind vergrößerte Bilder von Galaxien, die weit hinter Abell S1063 liegen. Ihr Licht wäre ohne Abell S1063 nicht entdeckt worden. Sie sind etwa doppelt so weit entfernt.

Die Masse von Abell S1063 beträgt ungefähr 100 Billionen Sonnenmassen, doch sie ist großteils unsichtbar. Durch diese Masse werden die weiter entfernten Galaxien vergrößert und verzerrt. Man kennt das als Gravitationslinseneffekt. Er bietet einen interessanten, flüchtigen Blick auf Galaxien im frühen Universum. Die Verzerrung entsteht durch die gekrümmte Raumzeit. Diese wurde vor hundert Jahren erstmals von Einstein vorhergesagt. Das Bild von Hubble ist Teil von Frontier Fields, einem Programm, das die letzte Grenze erforschen soll.

Zur Originalseite

SDP.81 – eine Galaxie mit Einsteinring

In der Mitte schimmert ein blauer Fleck, er ist eine Galaxie, die durch ihre Gravitation das Bild einer weiter entfernten Galaxie wie einen Bogen um sich krümmt.

Bildcredit: Y. Hezaveh (Stanford) et al., ALMA (NRAO/ESO/NAOJ), NASA/ESA Weltraumteleskop Hubble

Kann sich eine Galaxie hinter einer anderen verstecken? Nicht im Fall von SDP.81. Die Galaxie im Vordergrund wurde mit dem Weltraumteleskop Hubble fotografiert. Sie ist blau dargestellt und verhält sich wie eine riesige Gravitationslinse, die das Licht einer Galaxie dahinter um sich herum krümmt. So wird diese sichtbar.

Die hinten gelegene Galaxie ist rot dargestellt. Sie wurde vom Atacama Large Millimeter Array (ALMA) in Radiowellenlängen abgebildet. Die Ausrichtung ist so präzise, dass das Bild der fernen Galaxie zu einer Art Teilring um die Vordergrundgalaxie gekrümmt ist. Solche Gebilde werden als Einsteinring bezeichnet.

Wenn man die Verzerrung durch die Gravitationslinse genau analysiert, zeigt sich, dass eine kleine, dunkle Begleitgalaxie zur Ablenkung beiträgt. Das ist ein weiterer Hinweis, dass viele Begleitgalaxien ziemlich schwach sind und von Dunkler Materie beeinflusst werden. Die kleine Galaxie ist der kleine weiße Punkt links. Der Einsteinring ist zwar nur ein paar Bogensekunden breit. Er ist in Wirklichkeit Zigtausende Lichtjahre groß.

Zur Originalseite