Trio Leo

Die drei Galaxien im Bild sind Spiralgalaxien im Sternbild Löwe, die eng beisammen stehen. Die Galaxie links unten ist von der Kante zu sehen, ihre Scheibe wirkt fluffig. Durch die Mitte verläuft ein dunkles Staubband.

Bildcredit und Bildrechte: Philippe Durville

Diese berühmte Gruppe ist das Leo-Triplett. Es sind drei prächtige Galaxien in einem engen Sichtfeld, sogar dann, wenn man sie mit kleineren Teleskopen fotografiert. Einzeln sind sie als NGC 3628 (links), M66 (rechts unten) und M65 (oben) bekannt.

Alle drei sind große Spiralgalaxien. Doch sie sehen einander nicht ähnlich, weil ihre galaktischen Scheiben in verschiedenen Winkeln zu uns zeigen. NGC 3628 ist von der Seite zu sehen. Ihre undurchsichtigen Staubstraßen schneiden durch die Ebene der Galaxie. Die Scheiben von M66 und M65 sind stark genug geneigt, dass wir ihre Spiralstruktur sehen.

Gravitations-Wechselwirkungen zwischen den Galaxien der Gruppe führten zu verräterischen Zeichen. Dazu zählt die gekrümmte, aufgeblähte Scheibe von NGC 3628. Außerdem sind die Spiralarme von M66 in die Länge gezogen.

Das Bild der Region ist am Himmel ungefähr ein Grad groß, also so breit wie zwei Vollmonde. Das Trio ist mehr als 500.000 Lichtjahre entfernt. Dort ist das Bildfeld mehr 30 Millionen Lichtjahre breit.

Zur Originalseite

Wenn Wega im Norden steht

Zwei Bilder zeigen, wie die Sterne am Himmel scheinbar um einen Stern kreisen. Links kreisen sie um den Polarstern. Rechts kreisen sie um den Stern Wega, der in 12.000 Jahren der Himmelsnordpol sein wird.

Bildcredit und Bildrechte: Miguel Claro | Dark Sky Alqueva

In nur ungefähr 12.000 Jahren ist Wega der Nordstern. Sie ist dann der hellste Stern nahe beim Himmelsnordpol unseres Planeten. Wenn ihr dann mit Kamera und Stativ den Nachthimmel lange belichtet, laufen die konzentrischen Bögen der Strichspuren um einen Punkt nahe beim Stern Wega, weil die Achse der Erde rotiert.

Derzeit steht praktischerweise der helle Polarstern nahe beim Himmelsnordpol. Doch das ändert sich, weil die Rotationsachse der Erde wie ein wackelnder Kreisel rotiert. Die Periode der Präzession dauert etwa 26.000 Jahre.

Eure Kamera steht aber jetzt bereit, und ihr möchtet nicht 12.000 Jahre warten, bis Wega unser Nordstern ist? Dann seht euch diese einfallsreiche Demonstration an. Die aktuellen Strichspuren sind links. Zum Vergleich zeigt das rechte Bild Strichspuren, die das Jahr 14.000 n. Chr. simulieren. Beide Bilder wurden im April im portugiesischen Lichtschutzgebiet Alqueva in Alentejo fotografiert.

Der Astronom Miguel Claro erzeugte Strichspuren der fernen Zukunft, die auf Wega zentriert sind, indem er die Rotation von zwei den Sternen nachgeführten Kameras kombinierte. So entstand die scheinbare Verschiebung des Himmelsnordpols der Erde. (Nachtrag: Dank an APOD-Leserinnen und -Leser. Sie wiesen darauf hin, dass die Wega als Polstern fast an derselben Position in der Landschaft steht, wo sich jetzt der Polarstern befindet).

Zur Originalseite

An der Grenze der Auflösung

Am Okular eines riesigen Teleskops steht ein Astronom. Er testet die neue adaptive Optik MagAO am Magellan-Clay-Teleskop am Las-Campanas-Observatorium mit dem Doppelsternsystem Alpha Centauri.

Bildcredit und Bildrechte: Yuri Beletsky (Las Campanas Observatory, Carnegie Institution)

Wolltet ihr immer schon einmal durch das Okular eines großen Teleskops im All sehen? Dabei hättet ihr einen scharfen Ausblick mit begrenzter Beugung. Beobachter auf der Erde plagt die Unschärfe der Atmosphäre. Davon befreit, wäre die Winkelauflösung nur durch die Wellenlänge des Lichts und den Durchmesser des Teleskops begrenzt – egal ob Linse oder Spiegel. Je größer der Durchmesser, desto schärfer das Bild.

Doch bei dem irdischen Teleskop auf dem Schnappschuss wird ein neues aktives adaptives Optiksystem (MagAO) verwendet. Es hebt die Weichzeichnung durch die Atmosphäre auf.

Bei der visuellen Beobachtung des berühmten Doppelsternsystems Alpha Centauri testete der Astronom Laird Close das Systems am Okular des Magellan-Clay-Teleskops am Las-Campanas-Observatorium. Es hat einen 6,5 Meter großen Spiegel. Dabei sah er eine historische Ansicht, die nur durch die Auflösung begrenzt war. Sie ist im Einschub gezeigt. Das enge Doppelsternsystems war visuell deutlich getrennt. Der Astronom musste dazu nicht in den niedrigen Erdorbit reisen.

Zur Originalseite

Sommerdreiecke über Japan

Hinter einem blühenden Kirschbaum leuchten viele Sternbilder am Himmel, darunter das bekannte Sommerdreieck.

Bildcredit und Bildrechte: Shingo Takei (TWAN)

Habt ihr schon einmal das Sommerdreieck gesehen? Die hellen Sterne Wega, Deneb und Altair bilden ein großes Dreieck am Himmel. Es geht auf der Nordhalbkugel zu Frühlingsbeginn am Morgen und im Herbst am Abend auf. In den Sommermonaten steht das Dreieck um die Mitternacht fast im Zenit.

Dieses Bild der Sterngruppe des Sommerdreiecks wurde letzten Monat in Gunma in Japan fotografiert. Im Vordergrund blüht ein 15 Meter hoher, 500 Jahre alter Kirschbaum mit einer ebenfalls dreieckigen Form. Das Dreieck im Asterismus ist nur von der Erde aus erkennbar – in Wirklichkeit sind die Sterne im Weltraum Tausende Lichtjahre voneinander entfernt.

Zur Originalseite

Gravitationsanomalien auf Merkur

Auf der Merkuroberfläche sind Gravitationsanomalien messbar. Sie sind als rote Flecken mit gelber und blauer Umrandung dargestellt. Die Gravitationsdaten wurden über ein Bild von Merkur gelegt.

Bildcredit: NASA, GSFC’s SVS, JHU’s APL, Carnegie Inst. Washington

Was befindet sich unter der Merkuroberfläche? Die Roboter-Raumsonde MESSENGER kreiste in den letzten vier Jahren um den Planeten Merkur. Sie schickte ihre Daten mit Radiowellen und sehr präziser Energie zur Erde. Doch die Gravitation des Planeten veränderte diese Energie leicht. Das war von der Erde aus messbar. Es ermöglichte die Erstellung einer beispiellos präzisen Gravitationskarte.

Hier sind die Gravitationsanomalien in Falschfarben dargestellt. Sie wurden mit einem Bild der Planetenoberfläche kombiniert. Sie ist von Kratern übersät. Rote Farben zeigen Regionen mit leicht erhöhter Gravitation. Sie markieren also Gebiete, wo sich unter der Oberfläche ungewöhnlich dichte Materie befindet. Die Region in der Mitte ist das Caloris-Becken. Die riesige Struktur entstand bei einem Einschlag. Sie hat einen Durchmesser von ungefähr 1500 km.

Inzwischen schloss die Sonde MESSENGER ihre Mission ab, nachdem sie ihren Treibstoff verbraucht hat. Letzte Woche stürzte sie wie geplant auf die Oberfläche von Merkur.

Zur Originalseite

Ein unerwartetes Polarlicht über Norwegen

Dichte Polarlichtschleier hängen vom Himmel, sie schimmern grün. Unten leuchtet der Mond über dem Strand in Norwegen. Rechts sucht eine Person mit Taschenlampe einen Objektivdeckel.

Bildcredit und Bildrechte: Tommy Richardsen

Manchmal erhellt sich der Himmel unerwartet. Eine Reise am 8. Februar 2014 in den Norden Norwegens, um Polarlichter zu fotografieren, verlief nicht so gut wie erhofft. In Steinsvik in der Provinz Troms im Norden Norwegens war Mitternacht schon vorbei. In jüngster Zeit gab es Sonnenaktivität. Trotz war der Himmel enttäuschend. Also begann der Astrofotograf zu packen und wollte gehen.

Sein Bruder suchte nach einem fehlenden Objektivdeckel, als am Himmel plötzlich tolle Polarlichter explodierten. Der Fotograf reagierte schnell. Er fotografierte eine Serie detailreicher grüner Schleier. In der Mitte stand der helle Mond. Rechts suchte der Bruder den Objektivdeckel. Der Polarlichtblitz dauerte nur ein paar Minuten. Doch die Erinnerung daran bleibt vermutlich viel länger bestehen.

Zur Originalseite

Mondaufgang im Schatten des Mauna Kea

Der Mauna Kea wirft seinen langen Schatten über das Meer. Im Vordergrund ist ein Gipfel zu sehen, hinter den Wolken leuchtet der Mond im Schattenkegel, darüber ist der Erdschatten und ein rötlicher Gürtel zu sehen, der in den blauen Himmel übergeht.

Bildcredit und Bildrechte: Michael Connelley (U. Hawaii)

Wie kann der Mond durch einen Berg hindurch aufgehen? Das kann er nicht. Was hier fotografiert wurde, ist ein Mondaufgang im Schatten eines großen Vulkans. Der Vulkan ist der Mauna Kea auf Hawaii in den USA. Er ist ein beliebter Ort für spektakuläre Fotos, da er möglicherweise der beste Beobachtungsort auf dem Planeten Erde ist.

Die Sonne ist gerade in der entgegengesetzten Richtung hinter der Kamera untergegangen. Außerdem ist die volle Phase des Mondes vorbei. Wäre er exakt in seiner vollen Phase, würde er – möglicherweise verfinstert – an der Spitze des Schattens aufgehen.

Der Mond geht aber im dreieckigen Schattenkegel des Vulkans auf. Er ist Korridor aus Dunkelheit, der sich in der Ferne verjüngt wie zusammenlaufende Bahngleise. Der Mond ist zu groß und zu weit entfernt, als dass ihn der Schatten des Vulkans genau treffen könnte. Durch die Brechung des Mondlichtes in der Erdatmosphäre ist der Mond leicht oval verzerrt. Vorne stehen Aschenkegel von alten Vulkanausbrüchen.

Zur Originalseite

M51 – die Strudelgalaxie

In der Mitte ist eine Spiralgalaxie mit markanten Armen von oben zu sehen, die von vielen blauen Sternen und roten Sternbildungsstrukturen markiert ist. Oben rechts verläuft ein Spiralarm zu einer kleineren Begleitgalaxie, die gelbrötlich leuchtet.

Bildcredit und Bildrechte: Martin Pugh

Folgt der Deichsel des Großen Wagens vom Kasten aus, bis ihr zum letzten hellen Stern gelangt. Wenn ihr dann das Teleskop ein bisschen südwestlich schiebt, findet ihr vielleicht dieses tolle Paar wechselwirkender Galaxien. Sie sind der 51. Eintrag in Charles Messiers berühmtem Katalog.

Die große Galaxie ist vielleicht der Original-Spiralnebel. Sie hat eine klar definierte Spiralstruktur und ist auch als NGC 5194 katalogisiert. Die Spiralarme und Staubbahnen ziehen klar erkennbar über ihre Begleitgalaxie NGC 5195 (rechts).

Das Paar ist zirka 31 Millionen Lichtjahre entfernt. Es liegt offiziell im kleinen Sternbild Jagdhunde. M51 wirkt mit matt und verschwommen, wenn man sie mit dem Fernrohr betrachtet. Detailreiche Bilder wie dieses zeigen auffällige Farben und blasse Gezeitenbruchstücke rund um die kleinere Galaxie.

Zur Originalseite