Die Andromeda Galaxie in Ultraviolett

Die Andromedagalaxie M31, unsere nächstliegende große Nachbargalaxie in Ultraviolettlicht, aufgenommen von GALEX.

Bildcredit: NASA, JPL-Caltech, GALEX

Beschreibung: Wie sieht die Andromedagalaxie in Ultraviolettlicht aus? Hier dominieren junge blaue Sterne, die das galaktische Zentrum umkreisen. Die Andromedagalaxie ist auch als M31 bekannt und an die 2,5 Millionen Lichtjahre entfernt. Verglichen mit anderen großen Galaxien ist sie wirklich sehr nahe.

Ihr Durchmesser beträgt etwa 230.000 Lichtjahre, daher benötigte das NASA-Satellitenteleskop Galaxy Evolution Explorer (GALEX) elf verschiedene Bildfelder, um im Jahr 2003 dieses wunderschöne Porträt der Spiralgalaxie im Ultraviolettlicht zu erstellen. Während auf Bildern in sichtbarem Licht die Spiralarme der Andromedagalaxie markant hervortreten, sehen ihre Arme im Ultraviolettlicht eher wie Ringe aus. Diese Ringe sind Orte mit intensiver Sternbildung und werden als Hinweis gedeutet, dass Andromeda vor mehr als 200 Millionen Jahren mit der kleineren benachbarten elliptischen Galaxie M32 kollidierte.

Die Andromedagalaxie und unsere eigene, vergleichbare Milchstraße sind die massereichsten Mitglieder der Lokalen Gruppe und kollidieren voraussichtlich in mehreren Milliarden Jahren – vielleicht etwa dann, wenn sich die Atmosphäre unserer Sonne ausdehnt, bis sie die Erde verschlingt.

Zur Originalseite

Flug durch den Orionnebel in Infrarotlicht


Videocredit: NASA, Weltraumteleskop Spitzer, Universe of Learning; Visualisierung: F. Summers (STScI) et al.; Musik und Lizenz: Serenade für Streicher (A. Dvořák), Advent Chamber Orch.

Beschreibung: Was würdet ihr bei einem Flug in den Orionnebel sehen? Diese spannende dynamische Visualisierung des Orionnebels basiert auf echten astronomischen Daten und versierter Film-Rendering-Technik.

Das digital modellierte Video basiert auf Infrarotdaten des Weltraumteleskops Spitzer. Es zeigt eine berühmte Sternentstehungsstätte aus nächster Nähe, die normalerweise aus einer Entfernung von 1500 Lichtjahren zu sehen ist. Die Blickrichtung verläuft entlang eines ein Lichtjahr breiten Tals in der Wand der riesigen Molekülwolke in der Region. Orions Tal endet in einer Höhlung, die von den energiereichen Winden und der Strahlung der massereichen Zentralsterne im Trapez-Sternhaufen geformt wurden.

Der ganze Orionnebel ist etwa 40 Lichtjahre groß und liegt im selben Spiralarm unserer Galaxis wie die Sonne.

Zur Originalseite

Simulation: Entstehung der ersten Sterne


Videocredit: Harley Katz (U. Oxford) et al.

Beschreibung: Wie entstanden die ersten Sterne? Um das herauszufinden, wurde die Computersimulation SPHINX für Sternbildung im sehr frühen Universum erstellt. Einige der Ergebnisse sind in diesem Video dargestellt. Die Zeit seit dem Urknall wird links oben in Millionen Jahre angezeigt.

Sogar 100 Millionen Jahre nach dem Urknall war die Materie im Kosmos zu gleichmäßig verteilt, als dass Sterne hätten entstehen können. Außer der Hintergrundstrahlung ist das Universum dunkel.

Bald beginnen leichte Materieklumpen mit viel Wasserstoff zu ersten Sternen zu verschmelzen. In diesem Zeitraffervideo steht violett für Gas, weiß für Licht und Gold für Strahlung, die so energiereich ist, dass sie Wasserstoff ionisiert und in geladene Elektronen und Protonen zerlegt. Die goldfarbenen Regionen zeigen auch die massereichsten Sterne, die als mächtige Supernovae enden. Der eingeschobene Kreis betont eine Zentralregion, aus der eine Galaxie entsteht. Die Simulation läuft, bis das Universum etwa 550 Millionen Jahre alt ist.

Um die Genauigkeit der SPHINX-Simulationen und die zugrunde liegenden Annahmen zu beurteilen, werden die Ergebnisse nicht nur mit aktuellen detailreichen Beobachtungen verglichen, sondern auch mit künftigen direkteren Beobachtungen des frühen Universums verglichen, die mit dem noch in Bau befindlichen NASA-Weltraumteleskop James Webb geplant sind.

Zur Originalseite

Im Inneren des Flammennebels

Der Flammennebel NGC 2024 ist 1400 Lichtjahre entfernt im Sternbild Orion in der Nähe des Sterns Alnitak.

Bildcredit: NASA, JPL-Caltech, IPAC Infrared Science ArchiveBearbeitung: Amal Biju

Beschreibung: Der Flammennebel ist 1400 Lichtjahre entfernt und ein Prachtstück auf optischen Bildern der staubigen, dicht gedrängten Sternbildungsregionen im Oriongürtel und beim östlichsten Gürtelstern Alnitak. Dieser ist der helle Stern rechts auf diesem Infrarotbild des Weltraumteleskops Spitzer.

Die Infrarotansicht ist ungefähr 15 Lichtjahre breit und führt euch ins Innere des Nebels mit leuchtendem Gas und undurchsichtigen Staubwolken. Sie zeigt viele Sterne des in jüngster Zeit entstandenen, eingebetteten Sternhaufens NGC 2024, der etwa in der Mitte konzentriert ist. Die Sterne in NGC 2024 sind zwischen 200.000 und 1,5 Millionen Jahre jung.

Die Daten lassen den Schluss zu, dass die jüngsten Sterne um die Mitte des Flammennebelhaufens konzentriert sind. Das ist das Gegenteil der einfachsten Modelle für Sternentstehung in einem Sternentstehungsgebiet, die besagen, dass die Sternbildung im dichten Zentrum eines Molekülwolkenkerns beginnt. Das Ergebnis erfordert ein komplexeres Modell für Sternbildung im Inneren des Flammennebels.

Zur Originalseite

Der Röntgenhimmel von eROSITA

Erste Ganzhimmelsdurchmusterung im Röntgenlicht des Weltraumteleskops eROSITA an Bord des Satelliten Spektr-RG.

Bildcredit und Bildrechte: J. Sanders, H. Brunner und eSASS Team (MPE); E. Churazov, M. Gilfanov (IKI)

Beschreibung: Was wäre, wenn Sie Röntgenstrahlen sehen könnten? Der Nachthimmel wäre ein seltsamer, fremdartiger Ort. Röntgenstrahlen haben ungefähr 1000-mal mehr Energie als die Photonen von sichtbarem Licht. Sie entstehen durch gewaltige Explosionen sowie in astronomischen Umgebungen mit hoher Temperatur. Statt der vertrauten ruhigen Sterne wäre der Himmel voller exotischer Sterne, aktiver Galaxien und heißer Supernovaüberreste.

Dieses Röntgenbild zeigt den ganzen Himmel beispiellos detailreich in Röntgenlicht, abgebildet vom Weltraumteleskop eROSITA an Bord des Satelliten Spektr-RG, der letztes Jahr in einen L2-Orbit gestartet wurde.

Die Ebene unserer Milchstraße verläuft quer über die Mitte. Das Bild zeigt einen diffusen, überall vorhandenen Röntgenhintergrund und die heiße interstellare Blase, die als Nordpolar-Sporn bezeichnet wird. Auch glühend heiße Supernovaüberreste wie Vela, die Cygnus-Schleife und Cas A oder energiereiche Doppelsterne wie Cyg X-1 und Cyg X-2 sind abgebildet, weiters die GMW und die Galaxienhaufen in Coma, Virgo und Fornax.

Dieses erste Ganzhimmelsbild von eROSITA zeigt mehr als eine Million Röntgenquellen, von denen manche noch nicht erklärbar sind und daher sicherlich weiter erforscht werden.

Zur Originalseite

Das Monster des Mystischen Berges wird vernichtet

Der Kopf dieses Monsters im Catina-Nebel ist ein Herbig-Haro-Objekt, darin steckt ein neu entstandener Stern, der es langsam zerstört.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Beschreibung: Im Kopf dieses interstellaren Monsters steckt ein Stern, der es langsam zerstört. Das riesige Monster ist eigentlich eine leblose Reihe an Säulen aus Gas und Staub, die Lichtjahre lang sind. Der Stern im Kopf selbst ist hinter dem undurchsichtigen interstellaren Staub verborgen, doch er bricht teilweise heraus, indem er einander gegenüberliegende Strahlen aus energiereichen Teilchen ausstößt – so genannte Herbig-Haro-Strahlen.

Diese Säulen befinden sich im etwa 7500 Lichtjahre entfernten Carinanebel. Inoffiziell sind sie als Mystischer Berg bekannt. Dunkler Staub bestimmt die Erscheinung dieser Säulen, obwohl sie großteils aus durchsichtigem Wasserstoff bestehen.

Dieses Bild wurde mit dem Weltraumteleskop Hubble fotografiert. Das energiereiche Licht und die Winde von massereichen, neu entstandenen Sternen verdampfen und zerstreuen überall an diesen Säulen die staubigen Sternentstehungsorte, in denen sie selbst entstanden sind. In wenigen Millionen Jahren wird der Kopf dieses Riesen sowie ein Großteil seines Körpers von den Sternen im Inneren und in der Umgebung vollständig verdampft worden sein.

APOD in den Weltsprachen arabisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, Farsi, französisch, französisch, hebräisch, indonesisch, japanisch, katalanisch, koreanisch, kroatisch, montenegrinisch, niederländisch, polnisch, russisch, serbisch, slowenisch, spanisch, tschechisch und ukrainisch.

Zur Originalseite

Das Planetensystem Kepler-90

Im Planetensystem Kepler-90 kreisen 8 Planeten um einen sonnenähnlichen Stern; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA Ames, Wendy Stenzel

Beschreibung: Haben andere Sterne Planetensysteme wie unseres? Ja – ein solches System ist Kepler-90. Der Satellit Kepler, der zwischen 2009 und 2018 im Erdorbit betrieben wurde, entdeckte und katalogisierte acht Planeten, somit besitzt Kepler-90 die gleiche Anzahl bekannter Planeten wie unser Sonnensystem.

Wie unser System besitzt Kepler-90 einen Stern der Spektralklasse G vergleichbar mit unserer Sonne, weiters Gesteinsplaneten wie unsere Erde sowie ähnlich große Planeten wie Jupiter und Saturn. Zu den Unterschieden gehört, dass alle bekannten Kepler-90-Planeten relativ nahe beieinander um den Stern kreisen – näher als die Erde um die Sonne -, weshalb sie womöglich zu heiß sind, um Leben zu entwickeln. Doch bei Beobachtungen über einen längeren Zeitraum könnten weiter außen liegende, kühlere Planeten entdeckt werden.

Kepler-90 ist ungefähr 2500 Lichtjahre entfernt. Seine scheinbare Helligkeit beträgt 14 mag, er ist mit einem mittelgroßen Teleskop im Sternbild Drache (Draco) zu sehen. 2018 startete das Weltraumteleskop TESS, das nach Exoplaneten sucht. Weitere für das nächste Jahrzehnt geplante Missionsstarts mit der Möglichkeit, Exoplaneten zu finden, sind das JWST der NASA sowie WFIRST.

Zur Originalseite

Junge Sterne in der Rho-Ophiuchi-Wolke

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Wie entstehen Sterne? Um das herauszufinden, schufen Astronomen mit WISE, dem dem Wide-field Infrared Survey Explorer, diese reizende Falschfarben-Komposition in Infrarotwellenlängen mit Staubwolken und eingebetteten, neu entstandenen Sternen. Die kosmische Leinwand zeigt eine der nächstliegenden Sternbildungsregionen, es sind Teile des Wolkenkomplexes um Rho Ophiuchi, der ungefähr 400 Lichtjahre entfernt am südlichen Rand des aussprechbaren Sternbildes Ophiuchus (Schlangenträger) liegt.

Junge Sterne, die in einer großen Wolke aus kaltem molekularem Wasserstoff entstanden sind, heizen den umgebenden Staub auf und sorgen für das infrarote Leuchten. Sterne im Entstehungsprozess, die als junge stellare Objekte oder YSOs bezeichnet werden, sind in die kompakten rosaroten Nebel eingebettet, die man hier sieht. Vor den neugierigen Augen optischer Teleskope sind sie jedoch verborgen.

Eine Untersuchung der Region in durchdringendem Infrarotlicht brachte entstehende und neu entstandene Sterne zum Vorschein, deren Durchschnittsalter auf etwa 300.000 Jahre geschätzt wird. Verglichen mit dem Alter der Sonne von 5 Milliarden Jahren ist das extrem jung. Der auffällige rötliche Nebel rechts unten, der den Stern Sigma Scorpii umgibt, ist ein Reflexionsnebel aus Staub, der Sternenlicht streut.

Diese Ansicht von WISE wurde 2012 veröffentlicht. Sie umfasst an die 2 Grad und bedeckt in der geschätzten Entfernung der Rho-Ophiuchi-Wolke ungefähr 14 Lichtjahre.

Zur Originalseite