Eine Karte des beobachtbaren Universums

Ein Viertelkreis ist unten an der Spitze hell, geht von innen nach außen in rot über, dann blau, außen am Kreisbogen ist die Hintergrundstrahlung abgebildet.

Bildcredit und Bildrechte: B. Ménard und N. Shtarkman; Daten: SDSS, Planck, JHU, Sloan, NASA, ESA

Was wäre, wenn wir bis zum Rand des beobachtbaren Universums sehen könnten? Wir würden Galaxien hinter Galaxien sehen und dahinter nochmals Galaxien, und dahinter, nun ja, Quasare, das sind die hellen Zentren weit entfernter Galaxien.

Für ein besseres Verständnis der allergrößten Größenordnungen, die der Menschheit zugänglich sind, wurde eine Karte aller Galaxien und Quasare erstellt, die von 2000 bis 2020 mit der Sloan Digital Sky Survey (eine digitale Himmelsdurchmusterung) entdeckt wurden. Die Karte reicht bis zum Rand des beobachtbaren Universums.

Das Bild zeigt einen Keil der Karte mit ungefähr 200.000 Galaxien und Quasaren. Sie überblickt einen Zeitraum, der 12 Milliarden Jahre in die Vergangenheit reicht, das entspricht der kosmologischen Rotverschiebung 5.

Fast jeder Punkt im nahen unteren Teil der Illustration zeigt eine Galaxie. Die Rottöne zeigen die zunehmende Rotverschiebung und Entfernung. Ebenso zeigt fast jeder Punkt im obern Teil einen fernen Quasar. Blau schattierte Punkte sind näher als rote. Viele Entdeckungen zeigen deutlich, wie die Gravitation zwischen Galaxien dazu führte, dass sich das nahe Universum zu immer ausgeprägteren Faserstrukturen verdichtete als das ferne Universum.

Detailreichere Karte des heutigen APOD

Zur Originalseite

Simulation: Eine Scheibengalaxie entsteht

Videocredit: TNG-Arbeitsgemeinschaft, MPCDF, FAS Harvard U.; Musik: World’s Sunrise (YouTube: Jimena Contreras)

Wie sind wir hierher gekommen? Wir wissen, dass wir auf einem Planeten leben, der um einen Stern kreist, der wiederum die Galaxis umrundet, doch wie ist das alles entstanden? Unser Universum bewegt sich zu langsam, um das zu beobachten. Daher wurden schnelle Computersimulationen erstellt, um das herauszufinden. Dieses Video der Arbeitsgemeinschaft IllustrisTNG simuliert die Bewegung von Gas ab dem frühen Universum (Rotverschiebung 12) bis heute (Rotverschiebung 0).

Zu Beginn der Simulation fällt Gas aus der Umgebung in eine Region mit relativ hoher Gravitation und sammelt sich dort an. Nach wenigen Milliarden Jahren bildet sich bei dem faszinierenden kosmischen Tanz ein klar definiertes Zentrum. Gasklumpen fallen weiterhin in die rotierende Galaxie. Manche davon sind kleine Begleitgalaxien. Sie werden aufgenommen, bis am Ende des Videos die gegenwärtige Epoche erreicht ist.

Doch für die Milchstraße sind die großen Verschmelzungen vielleicht noch nicht vorbei. Es gibt aktuelle Hinweise, dass unsere große Spiralgalaxie in einigen Milliarden Jahren mit der etwas größeren Andromeda-Spiralgalaxie kollidiert und verschmilzt.

Offene Wissenschaft: Stöbert in mehr als 3000 Codes der Quellcodebibliothek für Astrophysik

Zur Originalseite

Earendel: Ein Stern im frühen Universum

Das Bild zeigt den Stern Earendel im fernen Universum der durch einen Galaxienhaufen im Vordergrund so stark vergrößert wird, dass er auf der Erde tausendfach heller erscheint.

Bildcredit: NASA, ESA, B. Welch (JHU), D. Coe (STScI); Bearbeitung: A. Pagan (STScI)

Beschreibung: Ist Earendel der am weitesten entfernte Stern, der je entdeckt wurde? Diese wissenschaftliche Möglichkeit ergab sich, als das Weltraumteleskop Hubble einen riesigen Galaxienhaufen beobachtete. Der Gravitationslinseneffekt dieses Haufens vergrößert und verzerrt eine Galaxie weit dahinter. Diese verzerrte Hintergrundgalaxie ist mit einer Rotverschiebung von 6,2 sehr weit entfernt. Auf diesem Bild erscheint sie als lange rote Kordel. Die Perlen auf der Kette sind wahrscheinlich einzelne Sterne oder Sternhaufen.

Die Linse des Galaxienhaufens erzeugt eine Linie der maximalen Vergrößerung, wo überlagerte Hintergrundobjekte tausendfach vergrößert erscheinen können. Am Schnittpunkt zwischen der Galaxienlinie und der Linie der maximalen Vergrößerung befindet sich eine „Perle“, die vermutlich von einem einzelnen hellen Stern im frühen Universum stammt. Dieser wird nun Earendel genannt.

Künftige Forschungen enthalten vielleicht weiteres Bildmaterial von Hubble und – ziemlich wahrscheinlich – vom neuen James-Webb-Weltraumteleskop, wenn es in naher Zukunft in Betrieb geht. So können sich zeigen, wie sich die Helligkeit von Earendel verändert. Die große Entfernung von Earendel übertrifft die aller bekannten stabilen Sterne. Nur der Stern, bei dessen Explosion GRB 090423 entstand, hatte eine noch höhere Rotverschiebung von 8,2.

Zur Originalseite

Fernes Licht brechen

Dieses Bild wurde mit dem Visible MultiObject Spectrograph (VIMOS) aufgenommen, der am Very Large Telescope (VLT) Array in Chile eingesetzt wurde.

Bildcredit und Bildrechte: VIMOS, VLT, ESO

Beschreibung: Im fernen Universum scheint die Zeit langsam zu vergehen. Da zeitdilatiertes Licht zum roten Ende des Spektrums verschoben (rotverschoben) erscheint, können Astronominnen und Astronomen mithilfe der kosmologischen Verlangsamung der Zeit gewaltige Entfernungen im Universum vermessen.

Hier sieht man, wie das Licht von fernen Galaxien in seine Farbbestandteile (Spektren) aufgebrochen wurde. Das erlaubt Forschenden, die kosmologische Rotverschiebung bekannter Spektrallinien zu vermessen. Die Neuheit dieses Bildes besteht darin, dass die Entfernung zu Hunderten Galaxien mit einem einzigen Bild vermessen werden kann. In diesem Fall wurde das Bild mit dem Visible MultiObject Spectrograph (VIMOS) aufgenommen, der am Very Large Telescope (VLT) Array in Chile eingesetzt wurde.

Die Analyse der Verteilung ferner Objekte im Raum bietet Einblicke, wann und wie im frühen Universum Sterne und Galaxien entstanden sind, wie sie Haufen gebildet und sich entwickelt haben.

Zur Originalseite

Ein Flug durch Hubbles Ultra Deep Field


Videocredit: NASA, ESA, F. Summers, Z. Levay, L. Frattare, B. Mobasher, A. Koekemoer und das HUDF-Team (STScI)

Beschreibung: Wie sieht es aus, wenn man durch das ferne Universum fliegt? Um das herauszufinden, schätzte ein Team von Astronominnen* die relativen Entfernungen zu mehr als 5000 Galaxien in einem der fernsten Galaxienfelder, die je abgebildet wurden: dem Hubble Ultra Deep Field (HUDF).

Weil Licht lange Zeit braucht, um das Universum zu durchqueren, sieht man die meisten Galaxien in diesem Video zu einer Zeit, als das Universum erst einen Bruchteil seines aktuellen Alters erreicht hatte, als sie sich noch im Entstehungsprozess befanden und – verglichen mit Galaxien der Gegenwart – ungewöhnliche Formen hatten. Es gibt noch keine ausgeprägten Spiralgalaxien wie unsere Milchstraße oder die Andromedagalaxie.

Gegen Ende des Videos fliegt der virtuelle Beobachter an den fernsten Galaxien des HUDF-Feldes vorbei, deren aufgezeichnete Rotverschiebung mehr als 8 beträgt. Diese frühe Klasse an Galaxien mit geringer Leuchtkraft enthielt wahrscheinlich energiereiche Sterne, deren Licht einen Großteil der übrig gebliebenen normalen Materie im Universum von einem kalten Gas in heißes, ionisiertes Plasma verwandelte.

Astrophysiker: Stöbern Sie durch mehr als 2200 Codes in der Astrophysics Source Code Library
Zur Originalseite

Das Hubble Ultra Deep Field in Licht und Ton


Bildcredit: NASA, ESA, Hubble; Sonifikation: G. Salvesen (UCSB); Daten: M. Rafelski et al.

Beschreibung: Haben Sie schon einmal vom Hubble Ultra-Deep Field gehört? Sicherlich haben Sie noch nie so davon gehört – schieben Sie den Mauspfeil über das Bild und hören Sie zu! Das Hubble Ultra Deep Field (HUDF) wurde 2003-2004 mit dem Weltraumteleskop Hubble erstellt, indem es lange Zeit in den fast leeren Raum starrte, sodass ferne, blasse Galaxien sichtbar wurden.

Das HUDF ist eines der berühmtesten Astronomiebilder, hier wurde es in Schwingungen übersetzt – die Entfernungen wurden akustisch dargestellt. Wenn Sie auf eine Galaxie zeigen, wird ein Ton gespielt, der ihre ungefähre Rotverschiebung andeutet. Weil Rotverschiebung das Licht zum roten Ende des Lichtspektrums verschiebt, sind hier die Töne zum tiefen Ende des Klangspektrums verschoben. Je weiter die Galaxie entfernt ist, desto größer ist ihre kosmologische Rotverschiebung (sogar wenn sie blau erscheint), und desto tiefer der abgespielte Ton. Gewöhnliche Galaxien im HUDF sind ungefähr 10,6 Milliarden Lichtjahre und klingen wie Fsus4. Welche ist die fernste Galaxie, die Sie finden können?

Dieses Weltraumbild des Tages (APOD) basiert auf einem Eintrag der neuen Webpräsenz Astronomy Sound of the Month (Astronomieklang des Monats – AstroSoM).

Hinweis: Der Ton ist nicht in allen Browsern abspielbar.

Zur Originalseite

Rotverschiebungs-Wertetabelle unseres Universums

Die umfangreiche Grafik listet Werte der Rotverschiebung.

Bildcredit: Sergey V. Pilipenko (LPI, MIPT)

Beschreibung: Wie weit ist „Rotverschiebung z=6“ entfernt? Menschen sind zwar von Natur aus mit Entfernung und Zeit vertraut, doch was bei astronomischen Objekten gemessen wird, ist eigentlich die Rotverschiebung, also eine Farbabweichung, die davon abhängt, wie sich die Energiedichte in unserem Universum entwickelt hat.

In den letzten Jahren führten kosmologische Messungen zu einer Übereinkunft darüber, welche Energieformen unser Universum durchdringen. Daher ist es nun möglich, eine einfache Tabelle zu erstellen, welche die beobachtete kosmologische Rotverschiebung z mit dem Standardkonzept von Zeit und Entfernung in Relation setzen, so auch die hochgerechnete Zeit, seit das Universum entstand.

So eine Tabelle ist oben dargestellt. Die Rotverschiebung z ist in der ersten und der letzten Spalte gelistet. Das entsprechende Alter des Universums in Milliarden Jahren ist in der mittleren Spalte abzulesen. Die Bedeutung der restlichen Spalten ist in der begleitenden technischen Abhandlung beschrieben.

Sterne in unserer Galaxis weisen eine kosmologische Rotverschiebung z=0 auf, doch die fernsten Supernovae scheinen sich jenseits einer Rotverschiebung z=1 zu ereignen. Damit explodierten sie laut dem Diagramm, als das Universum etwa die Hälfte des aktuellen Alters erreicht hatte. Die fernsten bisher beobachteten Gammablitze hingegen ereignen sich außerhalb einer Rotverschiebung z=6, als das Universum weniger als eine Milliarde Jahre alt war, das sind weniger als 10 Prozent seines gegenwärtigen Alters.

Zur Originalseite

Film: sich der Lichtgeschwindigkeit nähern

Bildcredit und Bildrechte: Antony Searle und Craig Savage (ANU)

Wie sieht es aus, wenn man fast mit Lichtgeschwindigkeit reist? Es gäbe seltsame visuelle Effekte. Einige sind in dieser relativistisch genauen Animation zu sehen. Durch die relativistische Aberration würden Objekte vor euch scheinbar Gruppen bilden. Durch den Dopplereffekt würden die Farben von vor euch liegenden Objekten ins Blaue und von Dingen hinter euch ins Rote verschoben.

Auf ähnliche Weise würde sich die Welt vor euch scheinbar ungewöhnlich schnell bewegen. Zugleich scheint es, als würde die Welt hinter euch verlangsamt. Objekte an den Seiten werden scheinbar gedreht. Das würde es ermöglichen, normalerweise verborgene Oberflächen zu sehen.

Weil die konstante Bewegung relativ ist, würden dieselben Effekte auftreten, wenn ihr euch nicht bewegt und die ganze Welt auf euch zurast.

Zur Originalseite