Galaxien außerhalb des Herzens: Maffei 1 und 2

Der Herznebel bildet eine ausladende grünliche Staubranke mitten im Bild, rechts leuchten einige helle Flecke, links sind zwei Galaxien erkennbar.

Credit: NASA, JPL-Caltech, WISE-Team

Beschreibung: Die beiden Galaxien links waren bis 1968 unbekannt, doch sie wären zwei der helleren Galaxien am Nachthimmel, wenn nicht der undurchsichtige Staub des zentralen Bandes unserer Milchstraße sie im sichtbaren Licht verdecken würde. Dieses Bild im Infrarotlicht wurde vom kürzlich gestarteten Wide-Field Infrared Survey Explorer (WISE) aufgenommen. Es zeigt diese weit entfernten Galaxien sehr detailreich in scheinbarer Nähe des fotogenen Herznebels (IC 1805). Die Spiralgalaxie beim oberen Bildrand ist leichter zu erkennen und als Maffei 2 bekannt. Rechts darunter steht die unscharf wirkende Maffei 1, die der Erde am nächsten gelegene riesige elliptische Galaxie. Dieses Falschfarbenbild ist vom oberen zum unteren Bildrand drei Vollmonddurchmesser hoch. Jede der Maffei-Galaxien hat einen Durchmesser von zirka 15.000 Lichtjahren. Sie sind etwa 10 Millionen Lichtjahre entfernt und befinden sich im Sternbild der aithiopischen Königin Kassiopeia. Im rechten Teil des Bildes ergänzen Sterne, Gasfasern und warmer Staub eine detailreiche Infrarotansicht des Herznebels.

Zur Originalseite

WISE-Infrarot-Andromeda

Im Bild schwebt eine schräg von oben sichtbare Spiralgalaxie, sie schimmert blau mit hellem, rosafarbenem Zentrum und sehr markanten hellorange gefärbten Staubbahnen entlang der Spiralarme. Es ist die Andromeda-Galaxie in Infrarot, die hier kaum erkennbar ist.

Credit: NASA / JPL-Caltech / UCLA

Beschreibung: Diese scharfe Weitwinkelansicht zeigt das Infrarotlicht der Spiralgalaxie in Andromeda (M31). Staub, der von Andromedas jungen Sternen erhitzt wird, ist gelb und rot abgebildet, während ältere Sternpopulationen als bläulicher Nebel erscheinen. Die Falschfarben-Himmelslandschaft ist ein Mosaik aus Bildern des neuen Satelliten Wide-field Infrared Survey Explorer (WISE). Mit mehr als dem doppelten Durchmesser unserer Milchstraße ist Andromeda die größte Galaxie der Lokalen Gruppe. Auch Andromedas Begleitgalaxien M110 (darunter) und M32 (darüber) sind im Bildfeld enthalten. WISE wurde im Dezember 2009 gestartet und begann am 14. Jänner seine sechs Monate dauernde Infrarotdurchmusterung des gesamten Himmels. Seine empfindlichen Infrarotdetektoren werden voraussichtlich auch erdnahe Asteroiden entdecken und das ferne Universum erforschen. Gekühlt werden sie mit gefrorenem Wasserstoff.

Zur Originalseite

Das Geheimnis des verblassenden Sterns

In der Mitte leuchtet ein Stern, rund herum sind Sterne verteilt.

Credit und Bildrechte: Alson Wong und Citizen Sky

Beschreibung: Alle 27 Jahre schwindet Epsilon Aurigae und bleibt für etwa zwei Jahre dunkel, ehe er wieder hell wird. Seit dem 19. Jahrhundert untersuchen Astronomen diesen geheimnisvollen Stern, wobei sie zu dem Schluss kamen, dass die lange Verfinsterung von Epsilon Aur, der in der Mitte dieser Teleskopansicht steht, durch ein dunkles Begleitobjekt entsteht. Doch die Natur des Begleiters und sogar die Beschaffenheit des hellen Sterns selbst konnten durch die Beobachtungen nicht genau ermittelt werden. Um weitere Hinweise zu sammeln untersucht Citizen Sky, eine Arbeitsgruppe aus Berufs- und Amateurastronomen, die aktuelle Verfinsterung von Epsilon Aur, die, wie sie berichteten, im August 2009 begann und ihr Minimum Ende Dezember erreichte. Epsilon Aur bleibt nun voraussichtlich das ganze Jahr 2010 dunkel, ehe er im Jahr 2011 rasch wieder seine normale Helligkeit erreicht. Inzwischen stützen aktuelle Infrarotdaten des Weltraumteleskops ein Modell für das rätselhafte System, das Epsilon Aur als einen großen Stern mit niedriger Masse am Ende seines Lebens ausweist, der periodisch von einem einzelnen Stern verdunkelt wird, der in eine Staubscheibe gehüllt ist. Die Scheibe hat einen Radius von schätzungsweise 4 AE, das ist die vierfache Erde-Sonne-Entfernung, und eine Dicke von zirka 0,5 AE.

Zur Originalseite

Riesiger Staubring um Saturn entdeckt

Die Grafik zeigt das Schema eines riesigen Staubringes, der um Saturn kreist. Links ist eine Infrarotaufnahme von Spitzer eingeschoben.

Credit: NASA / JPL-Caltech / Univ. of Virginia

Wie entstand der riesige Staubring um Saturn? Der neu entdeckte Staubring misst mehr als 200 Saturnradien – das ist mehr als der 50-fachen Radius von Saturns ausgedehntem E-Ring. Er ist somit der größte planetare Ring, der je entdeckt wurde.

Der Ring wurde vom Weltraumteleskop Spitzer im Erdorbit in Infrarotlicht entdeckt. Die führende Entstehungshypothese besagt, dass er aus Einschlagmaterial besteht, das vom Saturnmond Phoebe ausgestoßen wird. Phoebe kreist genau in der Mitte des Staubrings.

Eine weitere Vermutung besagt, dass der Staubring das geheimnisvolle Material liefert, das einen Teil des Saturnmondes Iapetus bedeckt, der am inneren Rand des Staubrings kreist. Ein Teil des Staubrings ist oben im Kasten in Falschfarben-orange vor zahlreichen Hintergrundsternen zu sehen.

Zur Originalseite

Säule und Jets in Carina

Das Bild zeigt eine kosmische Säule aus Gas und Staub im Carinanebel. Das überlagerte Bild zeigt helle Jets, die in Infrarotlicht hell leuchten.

Credit: NASA, ESA und das Hubble SM4 ERO Team

Beschreibung: Diese kosmische Säule aus Gas und Staub ist fast 2 Lichtjahre groß. Das Gebilde liegt in einer der größten Sternbildungsregionen unserer Galaxis, dem Carinanebel, der am südlichen Himmel in einer Entfernung von etwa 7500 Lichtjahren leuchtet.

Die komplexen Umrisse der Säule werden von den Winden und der Strahlung der jungen, heißen, massereichen Sterne Carinas geformt. Doch das Innere der kosmischen Säule selbst beherbergt Sterne im Entstehungsprozess.

Wenn Sie Ihren Mauspfeil über dieses Bild im sichtbaren Licht schieben, kommt eine durchdringende Ansicht der Säule im nahen Infrarot zum Vorschein – die nun von zwei schmalen energiereichen Strahlen dominiert wird, die von einem noch verborgenen jungen Stern ausgehen. Beide Bilder – im sichtbaren und im nahen Infrarot – wurden mit der neu installierten Wide Field Camera 3 des Weltraumteleskops Hubble gemacht.

Zur Originalseite

Das galaktische Zentrum in Infrarot

In einem Sternenfeld verlaufen links faserartige orangefarbene Nebel, rechts unten ist ein helles Gebilde.

Credit: Hubble: NASA, ESA und D. Q. Wang (U. Mass, Amherst); Spitzer: NASA, JPL und S. Stolovy (SSC/Caltech)

Beschreibung: Was geschieht im Zentrum unserer Milchstraße? Um das herauszufinden, konbinierten die Weltraumteleskope Hubble und Spitzer ihre Kapazizäten, um die Region mit noch nie dagewesenem Detailreichtum im Infrarotlicht zu durchmustern. Infrarotlicht ist besonders nützlich um das Zentrum der Milchstraße zu erforschen, weil sichtbares Licht in höherem Ausmaß von Staub verdunkelt wird. Dieses Bild besteht aus mehr als 2000 Bildern des Instruments NICMOS des Weltraumteleskops Hubble, die im letzten Jahr aufgenommen wurden. Das Bild umfasst 300 mal 115 Lichtjahre mit einer so hohen Auflösung, dass Strukturen mit nur 20mal der Göße unseres Sonnensystems erkennbar sind. Zu sehen sind Wolken leuchtenden Gases und dunklen Staubs sowie drei riesige Sternhaufen. Magnetfelder könnten oben links nahe dem Arches-Haufen Plasma leiten, während energiereiche Sternwinde nahe dem Quintuplet-Haufen links unten Säulen herausschälen. Der massereiche zentrale Sternhaufen, der Sagittarius A* umgibt, ist rechts unten zu sehen. Warum mehrere zentrale, helle, massereiche Sterne offenbar nicht mit diesen Haufen verbunden sind, konnte noch nicht herausgefunden werden.

Zur Originalseite

W5: Säulen der Sternbildung

Das Bild zeigt eine Nebellandschaft mit grünlichen, dichten teils säulenförmigen Wolken rechts und unten, links leuchtet es rot.

Credit: Lori Allen, Xavier Koenig (Harvard-Smithsonian CfA) et al., JPL-Caltech, NASA

Beschreibung: Wie entstehen Sterne? Ein genauer Blick des Weltraumteleskops Spitzer im Orbit auf die Sternbildungsregion W5 liefert klare Hinweise, dass massereiche Sterne nahe der Höhlenmitte älter sind als Sterne am Rand. Wahrscheinlich lösten die älteren Sterne im Zentrum die Entstehung der jüngeren Sterne am Rand aus. Dies geschieht, wenn heißes, ausströmendes Gas das kühlere Gas zu Knoten komprimiert, die so dicht sind, dass sie durch Gravitation zu Sternen kontrahieren. Zu den sichtbaren Hinweisen zählen spektakuläre Säulen, die sich langsam durch das heiße, ausströmende Gas verdichten.

Dieses Infrarotbild wurde nach wissenschaftlichen Kriterien gefärbt. Rot zeigt aufgeheizten Staub, während Weiß und Grün besonders dichte Gaswolken markieren. W5 ist auch als IC 1848 bekannt und bildet zusammen mit IC 1805 eine komplexe Sternbildungsregion, die als Herz- und Seelenebel bekannt ist. Dieses Bild betont einen 2000 Lichtjahre großen Teil von W5 mit vielen Sternbildungssäulen. W5 ist etwa 6500 Lichtjahre entfernt und liegt im Sternbild Kassiopeia.

Zur Originalseite

Die südlichen Pfeiler formen

Das Weltraumteleskop Spitzer zeigt Details der Region um Eta Carinae in Infrarot, die n sichtbarem Licht verborgen sind.

Bildcredit: Nathan Smith (Univ. of Colorado), et al., SSC, JPL, Caltech, NASA

Beschreibung: Eta Carinae ist einer der massereichsten und instabilsten Sterne in der Galaxis. Er übt einen tiefgreifenden Einfluss auf seine Umgebung aus. Diese fantastischen Säulen aus leuchtendem Staub und Gas in der südlichen Pfeiler-Region des Carinanebels wurden von den heftigen Winden und der Strahlung von Eta Carinae sowie weiteren massereichen Sternen geformt. In den Säulen sind neu geborene Sterne eingebettet.

Der ausgedehnte Eta-Carinae-Nebel leuchtet hell am südlichen Himmel der Erde. Er ist ungefähr 10.000 Lichtjahre von uns entfernt. Diese beeindruckende kosmische Ansicht ist großteils durch Staubnebel verdeckt. Dieses Bild des Weltraumteleskops Spitzer zeigt die Region in durchdringendem Infrarotlicht. Eta Carinae liegt oben rechts außerhalb des Falschfarbenbildes. Die Staubpfeiler mit ihren hellen Spitzen zeigen ungefähr in die Richtung des massereichen Sterns.

Das Spitzer-Bild ist in der Entfernung von Eta Carinae fast 200 Lichtjahre breit.

Zur Originalseite