Extrem schnell rotierende Spiralgalaxien

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: obere Reihe: NASA, ESA, Hubble, P. Ogle und J. DePasquale (STScI); untere Reihe: SDSS, P. Ogle und J. DePasquale (STScI)

Beschreibung: Warum rotieren diese Galaxien so schnell? Wenn Sie die Masse jeder Spirale danach einschätzen, wie viel Licht sie abstrahlt, müssten sie durch ihre schnelle Rotation auseinanderbrechen.

Die führende Vermutung, warum diese Galaxien nicht auseinanderbrechen, ist Dunkle Materie – Masse, die so dunkel ist, dass wir sie nicht sehen können. Diese Galaxien übertreffen mit ihrer Rotationsgeschwindigkeit sogar die Zerfallsgrenze – sie sind die am schnellsten rotierenden Scheibengalaxien, die wir kennen. Daher wird weiters vermutet, dass ihre Höfe aus Dunkler Materie so massereich sind – und ihre Rotation so schnell -, dass in diesen Galaxien weniger leicht Sterne entstehen als in gewöhnlichen Spiralen. Falls dem so ist, könnten diese Galaxien zu den massereichsten Spiralgalaxien gehören, die überhaupt möglich sind.

Überraschende Superspiralen wie diese werden weiterhin erforscht, wahrscheinlich auch durch Beobachtungen mit dem James-Webb-Weltraumteleskop der NASA, dessen Start für 2021 geplant ist.

Zur Originalseite

Das Grinsen der Schwerkraft

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen – NASA / CXC / J. Irwin et al.; Optisch – NASA/STScI

Beschreibung: Albert Einsteins Allgemeine Relativitätstheorie, die vor 100 Jahren veröffentlicht wurde, sagte das Phänomen des Gravitationslinseneffektes voraus. Dieser Effekt verleiht diesen fernen Galaxien eine so launige Erscheinung, wenn man sie im Spiegel von Röntgen- und optischen Bilddaten der Weltraumteleskope Chandra und Hubble betrachtet.

Die Galaxiengruppe trägt den Spitznamen Grinsekatze. Ihre beiden elliptischen Galaxien werden von angedeuteten Bögen eingerahmt. Diese Bögen sind optische Bilder ferner Hintergrundgalaxien. Sie wurden von der Gesamtverteilung der Gravitationsmasse der Gruppe im Vordergrund gebrochen. Diese Gravitationsmasse besteht vorwiegend aus Dunkler Materie.

Die beiden großen elliptischen „Augen“-Galaxien sind die hellsten Mitglieder ihrer Galaxiengruppe, sie sind dabei zu verschmelzen. Ihre relative Kollisionsgeschwindigkeit von fast 1350 Kilometern pro Sekunde erhitzt Gas auf Millionen Grad. Dabei entsteht das Leuchten im Röntgenspektralbereich, das in violetten Farbtönen abgebildet ist.

Sind Sie neugierig auf die Verschmelzung von Galaxiengruppen? Die Grinsekatzengruppe lächelt etwa 4,6 Milliarden Lichtjahre entfernt im Sternbild Großer Bär (Ursa Major).

Zur Originalseite

Sternenschmuckkästchen: der offene Sternhaufen NGC 290

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble; Danksagung: E. Olzewski (U. Arizona)

Beschreibung: Schmuckstücke gleißen nicht so hell – nur Sterne können das. Wie Juwelen in einer Schmuckschatulle glitzern die Sterne des offenen Haufens NGC 290 auf dieser schönen Darstellung aus Licht und Farbe. Der fotogene Sternhaufen wurde 2006 vom Weltraumteleskop Hubble im Erdorbit abgebildet. Offene Sternhaufen sind jünger, sie enthalten wenig Sterne und haben einen viel höheren Anteil an blauen Sternen als Kugelsternhaufen.

NGC 290 ist ungefähr 200.000 Lichtjahre entfernt und befindet sich in einer Nachbargalaxie, der Kleinen Magellanschen Wolke (KMW). Der offene Haufen enthält Hunderte Sterne und hat einen Durchmesser von ungefähr 65 Lichtjahren. NGC 290 und andere offene Haufen sind gute Laboratorien, um zu erforschen, wie sich Sterne mit unterschiedlichen Massen entwickeln, da die Sterne aller offenen Haufen etwa zur gleichen Zeit entstanden sind.

Zur Originalseite

MyCn 18: Der gravierte planetarische Sanduhrnebel

Der Nebel besteht aus roten Kreisen, die sich in der Mitte überschneiden. In der Schnittmenge leuchtet eine helle Stelle, die stark an ein Auge erinnert.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Seht ihr die Form der Sanduhr – oder schaut sie euch an? Mit etwas Fantasie zeichnen die Ringe von MyCn 18 den Umriss einer Sanduhr, doch in der Mitte ist ein ungewöhnliches Auge. Dem Zentralstern im sanduhrförmigen planetarischen Nebel läuft der Sand der Zeit davon. Wenn der Kernbrennstoff zur Neige geht, beginnt die kurze, spektakuläre Schlussphase in der Existenz eines sonnenähnlichen Sterns. Dabei stößt er seine äußeren Schichten ab. Sein Kern wird ein abkühlender Weißer Zwerg, der verblasst.

1995 entstand mit dem Weltraumteleskop Hubble (HST) eine Bilderserie planetarischer Nebel, dieser war einer davon. Diese zarten Ringe aus farbigem leuchtendem Gas umranden die zarten Wände der Sanduhr. Stickstoff ist rot, Wasserstoff grün und Sauerstoff ist blau dargestellt. Das beispiellos scharfe Hubble-Bild zeigt überraschende Details des Prozesses, bei dem der Nebel ausgeworfen wird. Das soll zur Lösung der offenen Rätsel um die komplexen Formen und Symmetrien planetarischer Nebel wie MyCn 18 beitragen.

Zur Originalseite

Aufbereitung von Kassiopeia A

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen – NASA, CXC, SAO; Optisch – NASA, STScI

Beschreibung: Massereiche Sterne in unserer Milchstraße haben ein eindrucksvolles Leben. Ihre Kernschmelzöfen, die durch den Kollaps gewaltiger kosmischer Staubwolken entstehen, entzünden sich und erzeugen in ihrem Inneren schwere Elemente. Nach wenigen Millionen Jahren wird die angereicherte Materie in den interstellaren Raum zurückgestoßen, wo die Sternbildung erneut beginnen kann.

Diese expandierende Trümmerwolke ist als Cassiopeia A bekannt und ein Beispiel für die Schlussphase im Lebenszyklus eines Sterns. Das Licht der Explosion, bei der dieser Supernovaüberrest entstand, wäre erstmals vor etwa 350 Jahren am Himmel des Planeten Erde zu sehen gewesen, doch dieses Licht brauchte ungefähr 11.000 Jahre, um zu uns zu gelangen.

Dieses Falschfarbenbild wurde aus Röntgen- und optischen Bilddaten des Chandra-Röntgenobservatoriums und des Weltraumteleskops Hubble zusammengesetzt. Es zeigt die immer noch heißen Fasern und Knoten im Überrest. In der geschätzten Entfernung von Cassiopeia A ist das Bild zirka 30 Lichtjahre breit. Energiereiche Röntgenemissionen bestimmter Elemente wurden farbcodiert: Silizium rot, Schwefel gelb, Kalzium grün und Eisen violett. Diese Farbcodierung hilft Astronomen, die Wiedergewinnung des Sternstaubs in unserer Galaxis zu untersuchen.

Die äußere, immer noch expandierende Druckwelle ist in blauen Farbtönen abgebildet. Der helle Fleck nahe der Mitte ist ein Neutronenstern – der unglaublich dichte kollabierte Überrest des massereichen Sternkerns.

Zur Originalseite

Nahaufnahme von Messier 61

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, ESO, Amateurdaten; Bearbeitung und Bildrechte: Robert Gendler und Roberto Colombari

Beschreibung: Bilddaten des Weltraumteleskops Hubble, der Europäischen Südsternwarte und kleiner Teleskope auf dem Planeten Erde wurden zu diesem prächtigen Porträt der von oben sichtbaren Spiralgalaxie Messier 61 (M61) kombiniert.

M61 liegt ungefähr 55 Millionen Lichtjahre entfernt im Virgo-Galaxienhaufen und ist auch als NGC 4303 bekannt. Man hält sie für ein Beispiel einer Balkenspiralgalaxie, ähnlich wie unsere Milchstraße. Wie viele Spiralgalaxien besitzt M61 ausladende Spiralarme, kosmische Staubbahnen, rötliche Sternbildungsregionen und junge blaue Sternhaufen. Der helle galaktische Kern ist auf dieser 50.000 Lichtjahre großen Nahaufnahme nach links versetzt.

Zur Originalseite

Gerüchte über ein dunkles Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: High-Z Supernova-Suchteam, HST, NASA

Beschreibung: Vor 21 Jahren wurden erstmals Ergebnisse vorgestellt, die Hinweise lieferten, dass sich ein Großteil der Energie unseres Universums nicht in Sternen oder Galaxien befindet, sondern an den Raum selbst gebunden ist. Nach Ansicht der Kosmologen setzten neue Beobachtungen ferner Supernovae eine große kosmologische Konstante – Dunkle Energie – voraus.

Die Idee einer kosmologischen Konstante war nicht neu – es gibt sie seit Beginn der heutigen relativistischen Kosmologie. Solche Annahmen waren jedoch in der Regel nicht sehr verbreitet, weil die Dunkle Energie so anders war als die bekannten Bestandteile des Universums, außerdem schien die Menge an Dunkler Energie durch andere Beobachtungen begrenzt, und weniger seltsame Kosmologien hatten die Daten bis dahin ohne eine beträchtliche Menge an Dunkler Energie gut erklärt.

Das Besondere war hier die offenbar direkte und zuverlässige Beobachtungsmethode sowie der gute Ruf der Wissenschaftler, welche die Untersuchungen durchführen. Im Laufe von zwei Jahrzehnten sammelten unabhängige Arbeitsgruppen von Astronominnen und Astronomen weiterhin Daten, welche die Existenz Dunkler Energie und die das verstörende Ergebnis eines derzeit beschleunigt expandierenden Universums zu bestätigen scheinen.

2011 erhielten die Arbeitsgruppenleiter für ihre Arbeit den Nobelpreis für Physik. Dieses Bild einer Supernova, die 1994 in den Außenbereichen einer Spiralgalaxie zu beobachten war, wurde von einer dieser Forschungsgruppen aufgenommen.

Zur Originalseite

M83: Die Tausend-Rubine-Galaxie

Die Spiralgalaxie M83 im Bild hat prachtvolle Spiralarme. Ihr gelblicher Kern ist von blau und rot leuchtenden Sternhaufen und Sternbildungsgebieten gesprenkelt.

Bildcredit: Subaru-Teleskop (NAOJ), Weltraumteleskop Hubble, Europäische Südsternwarte ESO; Bearbeitung und Bildrechte: Robert Gendler

Die große, schöne Spiralgalaxie M83 ist an die zwölf Millionen Lichtjahre entfernt. Sie liegt am südöstlichen Ende im sehr langen Sternbild Wasserschlange. Ihre markanten Spiralarme sind von dunklen Staubbahnen und blauen Sternhaufen durchzogen. Sie gaben dieser Galaxie ihren gängigen Namen: Südliches Feuerrad.

Rötliche Regionen mit Sternbildung sprenkeln die ausladenden Arme. Sie sind auf diesem funkelnden Farbkomposit betont. Daher hat M83 einen weiteren Spitznamen: Tausend-Rubine-Galaxie.

M83 ist etwa 40.000 Lichtjahre groß. Sie gehört zur selben Galaxiengruppe wie die aktive Galaxie Centaurus A. Der Kern von M83 strahlt im Röntgenlicht. Er besitzt eine hohe Konzentration an Neutronensternen und Schwarzen Löchern. Diese sind nach einem heftigen Sternbildungsausbruch übrig geblieben.

Das scharfe Farbkompositbild zeigt auch gezackte Sterne im Vordergrund in der Milchstraße. Hinten sind ferne Galaxien verteilt. Die Bilddaten stammen vom Subaru-Teleskop und von der Weitwinkel-Bildkamera der Europäischen Südsternwarte ESO sowie aus dem Hubble-Vermächtnisarchiv.

Zur Originalseite