Filamente des Vela-Supernovaüberrests

Das Bild zeigt ein Gemisch aus orangefarbenen und zartblauen Stoßwellen in einem Supernovaüberrest.

Bildcredit: CTIO, NOIRLab, DOE, NSF, AURA; Bearbeitung: T. A. Rector (U. Alaska Anchorage), M. Zamani und D. de Martin (’s NOIRLab)

Die Explosion mag zwar vorbei sein, aber die Konsequenzen gehen weiter. Vor ungefähr 11.000 Jahren konnte man einen Stern im Sternbild Segel (Vela) bei der Explosion beobachten, die für einen kurzen Zeitpunkt einen hellen Lichtpunkt am Himmel verursachte, der für Menschen, die am Beginn der aufgezeichneten Geschichte lebten, sichtbar war.

Die äußeren Schichten des Sterns krachten in das interstellare Medium und trieben eine Schockwelle (auch: Stoßwelle) vor sich hin, die man heute noch sehen kann.

Das heutige Bild hält die Filamente und den gigantischen Schock im sichtbaren Licht fest. Weil das Gas vom explodierten Stern wegfliegt, zerfällt er und reagiert mit dem interstellaren Medium und erzeugt dabei Licht in vielen unterschiedlichen Farben und Wellenlängen.

Im Zentrum des Vela Supernovaüberrests befindet sich ein Pulsar, ein Stern so dicht wie der Kern eines Atoms und mehr als 10 mal pro Sekunde rotiert.

Zur Originalseite

Der ungewöhnliche Nebel Pa 30

Im Bild ist ein magentafarbener Nebel mit gelblichen radialen Strahlen zu sehen, er erinnert an ein Feuerwerk.

Bildcredit: NASA, ESA, USAF, NSF; Bearbeitung: G. Ferrand (U. Manitoba), J. English (U. Manitoba), R. A. Fesen (Dartmouth), C. Treyturik (U. Manitoba); Text: G. Ferrand und J. English

Was hat dieses ungewöhnliche himmlische Feuerwerk verursacht? Der Nebe, Pa 30 genannt, liegt heute in derselben Himmelsregion, in der im Jahr 1181 ein heller „Gaststern“ am Himmel stand.

Obwohl die Filamente von Pa 30 ähnlich denen aussehen, die von einer Nova (z.B. GK Per) und einem planetarischen Nebel (z.B. NGC 6751) hervorgerufen werden, schlagen einige Astronom:innen nun vor, dass er von einer seltenen Form von Supernova erschaffen wurde. eine thermonuklearer Typus Iax und heißt SN 1181.

In diesem Modell ist die Supernova nicht das Ergebnis der Explosion eines einzigen Sterns, sondern eine Explosion, die entsteht, wenn zwei Weiße Zwerge zusammenlaufen und verschmelzen.

Der blaue Punkt im Zentrum ist vermutlich ein Zombistern, der übergebliebene Weiße Zwerg, der die supernovaähnliche Explosion überlebt hat.

Das heutige Bild ist aus mehreren Bildern und Datensets zusammengestellt, das mit Infrarot– (WISE), sichtbaren (MDM, Pan-STARRS) und Röntgen– (Chandra, XMM) Fernrohren aufgenommen wurde. Zukünftige Beobachtungen und Analysen werden uns noch mehr erzählen können.

Info zur totalen Sonnenfinsternis am 8. April 2024

Zur Originalseite

Vertont: Der Supernovaüberrest des Quallennebels

Bildcredit: Röntgen (blau): Chandra (NASA) und ROSAT (ESA); Sichtbares Licht (rot): DSS (NSF); Radio (grün): VLA (NRAO, NSF); Vertonung: NASA, CXC, SAO, K. Arcand; SYSTEM Vertonung: M. Russo, A. Santaguida)

Wie hört sich eigentlich ein Supernovaüberrest an? Schall kann als Dichtewelle eines Mediums verstanden werden. Er kann sich daher nicht im leeren Raum ausbreiten. Mithilfe einer Klanginterpretation können Zuhörer nun auf ganz neue Art und Weise den visuellen Eindruck eines Supernovaüberrests erfahren und verstehen.

Kürzlich wurde der Quallennebel (IC 443) auf recht kreative Weise vertont, wie im obigen Video zu sehen und zu hören ist. Wenn die nach unten laufende Linie im Video einen Stern passiert, hört man das Geräusch eines ins Wasser fallenden Tropfens – passend zum aquatischen Namensgeber des Nebels. Trifft die Linie auf Gas, ertönt ein tiefer Ton für rotes, ein mittlerer Ton für grünes und ein hoher Ton für blaues Gas.

Das Licht der Supernova, aus der der Quallennebel hervorging, ist bereits vor etwa 35 000 Jahren verblasst – als die Menschheit noch in der Steinzeit lebte. Im Laufe der nächsten Millionen Jahre wird sich der Nebel langsam auflösen. Der bei der Supernova entstandene extrem dichte Neutronenstern wird jedoch auf unbestimmt lange Zeit bestehen bleiben.

Zur Originalseite

Simeis 147, Überrest einer Supernova

Der rot leuchtende Nebel im Bild erinnert an ein wirres Knäul aus hellen Fäden.

Bildcredit und Bildrechte: Stéphane Vetter (Nuits sacrées)

Man verliert leicht den Faden, wenn man diesen komplex verschlungenen Fasern des Supernovaüberrestes Simeis 147 folgt. Er ist auch als Sharpless 2-240 katalogisiert. Der faserartige Nebel hat den landläufigen Namen Spaghettinebel. Er liegt an der Grenze der Sternbilder Stier (Taurus) und Fuhrmann (Auriga).

Die eindrucksvolle Gasstruktur bedeckt am Himmel fast 3 Grad, das entspricht 6 Vollmondbreiten. Die Entfernung der Trümmerwolke wird auf 3000 Lichtjahre geschätzt. In dieser Entfernung wäre der Nebel etwa 150 Lichtjahre breit.

Das Kompositbild enthält Daten, die mit Schmalbandfiltern aufgenommen wurden, um die Emissionen von leuchtendem Wasserstoff (rot) und Sauerstoff (blau) zu isolieren. Der Supernovaüberrest hat ein Alter von ungefähr 40.000 Jahren. Das bedeutet, dass das Licht der massereichen Sternexplosion erstmals die Erde erreichte, als Wollhaarmammuts frei herumliefen.

Außer dem weitläufigen Überrest hinterließ die kosmische Katastrophe auch einen Pulsar. Das ist der Überrest des ursprünglichen Sternkerns, nämlich ein rotierender Neutronenstern.

Zur Originalseite

Die Supernova-Stoßwelle des Bleistiftnebels

Mitten im Bild leuchtet ein blaues Büschel mit einigen karminroten Einsprenkelungen. Im Hintergrund leuchten Sterne vor einem schwach rötlichen Nebel.

Bildcredit und Bildrechte: Helge Buesing

Diese Supernova-Stoßwelle pflügt mit über 500.000 Kilometern pro Stunde durch den interstellaren Raum. Die dünnen, hellen, geflochtenen Filamente, die sich in diesem detailreichen Farbkomposit in der Mitte befinden und sich nach oben bewegen, sind in Wirklichkeit lange Wellen in einer kosmischen Schicht aus glühendem Gas, die fast von der Seite betrachtet wird. Der 1835 von John Herschel entdeckte schmale Nebel ist auch als Herschel’s Ray bekannt.

Das spitz zulaufende Erscheinungsbild des Nebels, der als NGC 2736 katalogisiert ist, hat ihm seinen heutigen volkstümlichen Namen eingebracht: Bleistiftnebel. Der Bleistiftnebel ist etwa 800 Lichtjahre von uns entfernt. Mit einer Länge von fast 5 Lichtjahren stellt er jedoch nur einen kleinen Teil des Vela-Supernovaüberrests dar. Vela ist ein südliches Sternbild und trägt im Deutschen den Namen „Segel des Schiffs„.

Der Vela-Überrest selbst hat einen Durchmesser von etwa 100 Lichtjahren. Hierbei dehnt sich die Trümmerwolke eines Sterns aus, der vor etwa 11.000 Jahren explodierte. Ursprünglich bewegte sich diese Schockwelle mit Millionen von Kilometern pro Stunde, inzwischen hat sie sich aber erheblich verlangsamt und umliegendes interstellares Material mitgerissen.

Zur Originalseite

IC 443: Der Quallennebel

In der Mitte leuchtet ein stark gefaserter, detailreicher quallenförmiger Nebel abgebildet, im Hintergrund sind Sterne und einige weitere Nebel verteilt.

Bildcredit und Bildrechte: David Payne

Warum schwimmt diese Qualle in einem Meer aus Sternen? Der Quallennebel schwebt nahe dem hellen Stern Eta Geminorum (im Bild rechts) durch das All und streckt dabei seine Tentakeln von der hellen, gebogenen Emissionszone links vom Zentrum aus.

Die kosmische Qualle ist eigentlich Teil des blasenförmigen Supernovaüberrests IC 443. Dabei handelt es sich um eine nach der Explosion eines massereichen Sterns expandierende Staub- und Gaswolke. Vor mehr als 30.000 Jahren erreichte das erste Licht dieser Explosion die Erde. So wie der Krabbennebel, sein Cousin in astronomischen Gewässern, beherbergt auch IC 443 einen Neutronenstern – den Rest eines kollabierten stellaren Kerns.

Der Quallennebel ist etwa 5.000 Lichtjahre von uns entfernt. In dieser Distanz würde sich das gezeigte Bild über einen Durchmesser von etwa 140 Lichtjahren erstrecken.

Kalender 2024: DE: Versand ab Passau, daher rasche Zustellung; Bestellungen aus AT werden in Wien versendet.

Zur Originalseite

Supernovaüberrest Cassiopeia A

Mitten im Bild prangt eine runde Struktur aus vielen rosa-lila Fasern, die bei einer gewaltigen Sternexplosion entstanden sind. Die Struktur dehnt sich aus. Über allem liegen nebelartige weiße Dunstwolken.

Bildcredit: NASA, ESA, CSA, STScI; D. Milisavljevic (Purdue-Universität), T. Temim (Princeton-Universität), I. De Looze (Universität Gent)

Massereiche Sterne in unserer Milchstraße führen ein spektakuläres Leben. Sie kollabieren aus riesigen kosmischen Wolken, ihre Kernbrennöfen zünden und erzeugen in ihrem Inneren schwere Elemente. Die angereicherte Materie der massereichsten Sternen wird nach wenigen Millionen Jahren in den interstellaren Raum zurückgeschleudert, wo die Sternbildung von neuem beginnen kann.

Die Trümmerwolke mit der Bezeichnung Cassiopeia A dehnt sich aus. Sie ist ein Beispiel für diese Schlussphase der Sternentwicklung. Das Licht der Supernovaexplosion, bei der dieser Überrest entstand, war vor etwa 350 Jahren erstmals am Himmel des Planeten Erde zu sehen, doch das Licht brauchte 11.000 Jahre, um uns zu erreichen.

Dieses scharfe NIRCam-Bild des Weltraumteleskops James Webb zeigt die immer noch heißen Fasern und Knoten im Supernovaüberrest. Die weißliche, rauchähnliche äußere Hülle der expandierenden Explosionswelle ist etwa 20 Lichtjahre groß. Der helle Fleck nahe der Mitte ist ein Neutronenstern. Ein Neutronenstern ist der unglaublich dichte, kollabierte Überrest eines massereichen Sternkerns.

Auf Webbs detailreichem Bild des Supernovaüberrestes Cassiopeia A sind auch Lichtechos von der zerstörerischen Explosion des massereichen Sterns erkennbar.

Zur Originalseite

Flemings dreieckiges Büschel

Vor dem Hintergrund, der mit Sternen gesprenkelt ist, breiten sich rot-blau-weiße Fasern aus, die eine entfernt dreieckige Form haben.

Bildcredit und Bildrechte: Cristiano Gualco

Diese verworrenen und miteinander verwobenen Fasern aus verdichtetem, leuchtendem Gas breiten sich als Teil des Cirrusnebels in Richtung des Sternbilds Schwan am Nachthimmel über dem Planeten Erde aus.

Der Cirrusnebel selbst ist ein großer Supernovaüberrest: eine sich ausdehnende Wolke, die bei der Explosion eines massereichen Sterns entstanden ist. Das Licht der eigentlichen Supernovaexplosion hat die Erde vermutlich schon vor mehr als 5000 erreicht. Die leuchtenden Filamente sind in tatsächlich langgezogene Rippel in einer dünnen Schicht, auf die wir von der Seite schauen. Sie sind auffallend gut durch das blaue Leuchten von ionisiertem Sauerstoff und durch Rottöne, die von Sauerstoff stammen, voneinander getrennt.

Der Cirrusnebel wird manchmal auch als Cygnusbogen bezeichnet und ist unter der Nummer NGC 6979 katalogisiert. Er ersteckt sich über etwa den sechsfachen Durchmesser des Vollmonds am Himmel.

Bei einer Entfernung von schätzungsweise 2400 Lichtjahren entspricht die Länge des hier gezeigten Büschels etwa 30 Lichtjahren. Es wird nach dem früheren Direktor des Harvard College Observatory auch Pickerings Dreieck genannt. Es sollte aber wohl besser den Namen seiner Entdeckerin tragen, der Astronomin Williamina Fleming, also Flemings dreieckiges Büschel.

Zur Originalseite