Planetarischer Nebel Mz3: Der Ameisennebel

Der planetarische Nebel Mz3n sieht aus wie einie riesige Weltraumameise.

Bildcredit: R. Sahai (JPL) et al., Hubble Heritage Team, ESA, NASA

Beschreibung: Warum ist diese Ameise keine riesige Kugel? Der planetarische Nebel Mz3 wird von einem sonnenähnlichen Stern ausgestoßen, der sicherlich rund ist. Doch warum bildet das ausströmende Gas einen ameisenförmigen Nebel, der eindeutig nicht rund ist?

Zu den Hinweisen zählen vielleicht die hohe Geschwindigkeit von 1000 km/s des ausgestoßenen Gases, die Länge von Lichtjahren der Struktur und der Magnetismus des hier gezeigten Sterns im Zentrum des Nebels. Eine mögliche Erklärung lautet, dass Mz3 einen zweiten, dunkleren Stern verbirgt, der auf einer engen Bahn um den hellen Stern kreist. Eine andere Hypothese besagt, dass die Eigenrotation und die Magnetfelder des Zentralsterns das Gas kanalisieren.

Da der Zentralstern unserer Sonne ähnlich zu sein scheint, hoffen Astronomen, dass ein besseres Verständnis der Geschichte dieser riesigen Weltraumameise nützliche Hinweise auf die wahrscheinliche Zukunft unserer Sonne und Erde liefert.

Zur Originalseite

Fäden in NGC 1947

NGC 1947 liegt 40 Millionen Lichtjahre entfernt im Sternbild Schwertfisch..

Bildcredit: ESA/Hubble und NASA, D. Rosario; Danksagung: L. Shatz

Beschreibung: NGC 1947 befindet sich tief am Südhimmel im Sternbild Schwertfisch. Sie ist etwa 40 Millionen Lichtjahre entfernt. Undurchsichtige Spuren aus kosmischem Staub verlaufen als Silhouetten vor dem Sternenlicht des hellen Kerns dieser merkwürdigen Galaxie.

Normalerweise folgt die Rotation von Gas und Staub, welche die Arme von Spiralgalaxien säumen, den Sternen, doch in NGC 1947 ist das nicht der Fall. Die eher komplizierte Bewegung der sichtbaren Staub- und Gassträhnen in dieser Galaxie lässt vermuten, dass sie von einer Gebergalaxie stammen, die in den letzten 3 Milliarden Jahren der Entwicklung dieser merkwürdigen Galaxie von NGC 1947 aufgenommen wurde.

Dieses scharfe Hubble-Bild mit gezackten Milchstraßensternen im Vordergrund und weiter entfernten Galaxien, die im Hintergrund verstreut sind, zeigt ungefähr 25.000 Lichtjahre des Zentrums von NGC 1947.

Zur Originalseite

Schleiernebel: Strähnen eines explodierten Sterns

Der Schleiernebel im Sternbild Schwan (Cygnus) ist 1400 Lichtjahre entfernt und entstand aus einer Supernova vor 7000 Jahren.

Bildcredit: ESA/Hubble und NASA, Z. Levay

Beschreibung: Strähnen wie diese sind alles, was von einem Milchstraßenstern sichtbar bleibt. Vor ungefähr 7000 Jahren explodierte dieser Stern als Supernova und hinterließ den Schleiernebel. Zu dieser Zeit war die expandierende Wolke wahrscheinlich so hell wie eine Mondsichel und war wochenlang sichtbar für die Menschen, die am Beginn der Menschheitsgeschichte lebten.

Der entstandene Supernovaüberrest ist auch als Cygnusschleife bekannt. Er ist inzwischen verblasst und nur noch mit einem kleinen Teleskop in Richtung des Sternbildes Schwan (Cygnus) sichtbar. Doch der Schleiernebel ist physikalisch gesehen riesig. Obwohl er ungefähr 1400 Lichtjahre entfernt ist, ist er mehr als fünfmal so groß wie der Vollmond.

Dieses Bild ist ein Mosaik aus sechs Bildern des Weltraumteleskops Hubble, die zusammen nur zirka zwei Lichtjahre abdecken, das ist ein kleiner Teil des ausladenden Supernovaüberrestes. Auf Bildern des ganzen Schleiernebels, können sogar erfahrene Leser*innen nicht alle abgebildeten Fasern bestimmen.

Samstag, 10. April, 19h: Frühlingssternbilder – online via Zoom – Eintritt frei!

Zur Originalseite

Das Zentrum der Lagune in Infrarot

Das Zentrum des Lagunennebels im Schützen mit dem massereichen jungen Stern Herschel 36.

Bildcredit und Lizenz: NASA, ESA, Hubble; Datenarchiv: MAST, Bearbeitung: Alexandra Nachman

Beschreibung: Diese sternengefüllte Infrarotansicht umfasst vier Lichtjahre im Zentrum des Lagunennebels. Bilder in sichtbarem Licht zeigen das leuchtende Gas und die undurchsichtigen Staubwolken, die in der Szene markant verteilt sind. Doch dieses Infrarotbild, das aus Daten des Weltraumteleskops Hubble erstellt wurde, späht tiefer ins Zentrum der aktiven Sternbildungsregion und zeigt neu entstandene Sterne, die darin verteilt sind. Dahinter liegt ein dicht gefülltes Sternenfeld im Zentrum unserer Milchstraße.

Die Zentralregion dieses turbulenten Sternentstehungsgebietes werden vom massereichen jungen Herschel 36 geformt und mit Energie versorgt, er ist der helle Stern mitten im Sichtfeld. Herschel 36 ist eigentlich ein Mehrfachsystem aus massereichen Sternen. Der massereichste Stern im System besitzt mehr als die 30-fachen Masse der Sonne, und sein Alter beträgt weniger als eine Million Jahre. Er sollte ein stellares Alter von fünf Millionen Jahren erreichen. Im Vergleich dazu hat die Sonne ein Alter von fast fünf Milliarden Jahren, und erst in weiteren etwa 5 Milliarden Jahren wird sie sich in einen Roten Riesen verwandeln.

Der Lagunennebel ist auch als M8 bekannt und liegt etwa 4000 Lichtjahre entfernt im Sternbild Schütze.

Zur Originalseite

Säulen des Adlernebels in Infrarot

Die Säulen der Schöpfung sind in sichtbarem Licht undurchsichtig, in Infrarotlicht kann man in sie hineinblicken.

Bildcredit: NASA, ESA, Hubble, HLA; Bearbeitung: Luis Romero

Beschreibung: Im Adlernebel entstehen neue Sterne, indem sie durch die Schwerkraft in Säulen aus dichtem Gas und Staub kontrahieren. Durch die intensive Strahlung dieser neu entstandenen hellen Sterne verdampft die Materie, die sie umgibt.

Dieses Bild wurde mit dem Weltraumteleskop Hubble in nahem Infrarotlicht aufgenommen. Es erlaubt den Betrachter:innen, durch einen Großteil des dichten Staubs, der die Säulen in sichtbarem Licht undurchsichtig macht, hindurchzublicken.

Die riesigen Strukturen sind Lichtjahre lang und werden landläufig Säulen der Schöpfung genannt. Der Adlernebel ist mit dem offenen Sternhaufen M16 verbunden, beide sind ungefähr 6500 Lichtjahre entfernt. Er liegt in einem nebelreichen Teil des Himmels. Für kleine Teleskope ist er ein leichtes Ziel im geteilten Sternbild Schwanz der Schlange (Serpens Cauda).

Zur Originalseite

Die Spiralgalaxie M66 von Hubble

Die Spiralgalaxie M66 gehört zum Leo-Triplett, einer Gruppe aus drei Galaxien im Sternbild Löwe.

Bildcredit: NASA, ESA, Hubble, Janice Lee; Bearbeitung und Bildrechtet: Leo Shatz; Text: Karen Masters

Beschreibung: Ein neuer Anblick einer alten Freundin ist immer wieder schön, zum Beispiel dieses faszinierende Bild des Weltraumteleskops Hubble, das die nahe Spiralgalaxie M66 zeigt.

M66 besitzt einen kleinen Zentralbalken. Sie gehört zum Leo-Triplett, einer Gruppe aus drei Galaxien, die ungefähr 30 Millionen Lichtjahre von uns entfernt sind. Das Leo-Triplett ist ein beliebtes Ziel für relativ kleine Teleskope, teils weil M66 und ihre galaktischen Begleiterinnen M65 und NGC 3628 allesamt etwa den Winkeldurchmesser eines Vollmondes voneinander entfernt erscheinen.

Dieses Bild von M66 wurde mit Hubble fotografiert, um den Zusammenhang zwischen Sternbildung und molekularen Gaswolken zu untersuchen. Gut erkennbar sind helle blaue Sterne, rosarote ionisierte Wasserstoffwolken, die entlang der äußeren Spiralarme verteilt sind, sowie dunkle Staubbahnen, in denen weitere Sternbildung versteckt sein könnte.

Zur Originalseite

Asteroiden in der Ferne

1998 wurde auf diesem Archivbild des Weltraumteleskops Hubble die lange blaue Spur eines Asteroiden entdeckt.

Bildcredit: NASA, ESA, Hubble; R. Evans und K. Stapelfeldt (JPL)

Beschreibung: Täglich treffen Gesteinsbrocken aus dem All auf die Erde. Doch je größer der Stein, desto seltener wird die Erde getroffen. Viele Kilogramm Weltraumstaub prasseln täglich auf die Erde. Größere Brocken erscheinen zunächst als heller Meteor.

Tennisballgroße Steine und Eisbrocken streifen täglich durch unsere Atmosphäre, die meisten verdampfen schnell und lösen sich in nichts auf. Felsen mit einem Durchmesser von zirka 100 Metern sind eine veritable Bedrohung, sie treffen ungefähr alle 1000 Jahre auf die Erde. Ein Objekt dieser Größe könnte heftige Tsunamis auslösen, wenn es einen Ozean trifft, und würde wohl sogar weit entfernte Ufer verwüsten. Eine Kollision mit einem mehr als 1 km großen massereichen Asteroiden ist sehr selten und tritt etwa in Abständen von Millionen Jahren auf, könnte aber globale Auswirkungen haben.

Viele Asteroiden bleiben unentdeckt. 1998 wurde auf dem oben gezeigten Archivbild des Weltraumteleskops Hubble die lange blaue Spur eines Asteroiden entdeckt. Eine Kollision mit einem großen Asteroiden würde die Erdbahn kaum beeinflussen, aber sehr viel Staub aufwirbeln, der das Klima der Erde verändern würde. Ein wahrscheinliches Ergebnis wäre das globale Aussterben vieler Lebensarten, das möglicherweise das aktuelle Artensterben in den Schatten stellt.

Zur Originalseite

Das vertikale Magnetfeld von NGC 5775

Die Spiralgalaxie NGC 5775 wurde bei der CHANG-ES-Durchmusterung (Continuum Halos in Nearby Galaxies) beobachtet, zeigt besitzt Ausläufer von Magnetfeldlinien.

Bildcredit: NRAO, NASA, ESA, Hubble; Bearbeitung und Text: Jayanne English (U. Manitoba)

Beschreibung: Wie weit reichen Magnetfelder aus Spiralgalaxien hinaus und nach oben? Jahrzehntelang wussten Astronom*innen nur, dass einige Spiralgalaxien Magnetfelder besitzen. Doch nachdem die NRAORadioteleskope des Very Large Array (VLA) (bekannt aus dem Film Contact) im Jahr 2011 aufgerüstet wurden, entdeckte man wie erwartet, dass diese Felder von der Scheibe aus senkrecht mehrere Tausend Lichtjahre hinaus reichen.

Dieses Bild der von der Seite sichtbaren Spiralgalaxie NGC 5775, die im Rahmen der CHANG-ES-Durchmusterung (Continuum Halos in Nearby Galaxies), zeigt auch Ausläufer von Magnetfeldlinien, wie sie in Spiralgalaxien üblich sein können. Ähnlich wie Eisenfeilspäne um einen Stabmagneten zeichnet die Strahlung von Elektronen galaktische Magnetfeldlinien nach, indem sich die Elektronen fast mit Lichtgeschwindigkeit um diese Linien schrauben.

Die Fasern im Bild wurden aus solchen Spuren in den VLA-Daten konstruiert. Das Bild in sichtbarem Licht wurde aus Daten des Weltraumteleskops Hubble konstruiert. Es zeigt rosarote, gashaltige Regionen, in denen Sterne entstehen. Anscheinend tragen Winde aus diesen Regionen zur Ausbildung der prächtigen ausgedehnten galaktischen Magnetfelder bei.

Zur Originalseite

Das Zentrum von NGC 1316: Nach der Kollision von Galaxien

NGC 1316 ist vermutlich eine riesige elliptische Galaxie und vermutlich das Ergebnis einer riesigen Galaxienkollision.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Bildrechte: Daniel Nobre

Beschreibung: Wie ist diese seltsam aussehende Galaxie entstanden? Astronominnen und Astronomen suchen detektivisch nach der Ursache für das ungewöhnliche Durcheinander an Sternen, Gas und Staub in NGC 1316. Untersuchungen lassen vermuten, dass NGC 1316 eine riesige elliptische Galaxie ist, die auch dunkle Staubbahnen enthält, welche normalerweise in Spiralgalaxien zu finden sind.

Detailreiche Bilder des Weltraumteleskops Hubble zeigt jedoch Details, die dabei helfen, die Geschichte dieses riesigen Wirrwarrs zu rekonstruieren. Detailreiche Weitwinkelbilder zeigen riesige Kollisionshüllen, während genaue Bilder vom Zentrum zeigen, dass es im Inneren von NGC 1316 nur wenige Kugelsternhaufen gibt. Solche Effekte sind in Galaxien zu erwarten, die in den letzten Milliarden Jahren Kollisionen oder Verschmelzungen mit anderen Galaxien hatten. Die dunklen Knoten und Staubbahnen im Bild lassen vermuten, dass eine oder mehrere der verschlungenen Galaxien Spiralgalaxien waren.

NGC 1316 ist etwa 50.000 Lichtjahre groß und liegt ungefähr 60 Millionen Lichtjahre entfernt im Sternbild Chemischer Ofen (Fornax).

Zur Originalseite

Die Wiederverwertung von Cassiopeia A

Der Supernovaüberrest Cassiopeia A ist 11.000 Lichtjahre entfernt, sein Licht war erstmals vor etwa 350 Jahren zu sehen.

Bildcredit: Röntgen – NASA, CXC, SAO; Optisch – NASA, STScI

Beschreibung: Massereiche Sterne in unserer Milchstraße haben ein spektakuläres Leben. Sie kollabieren in riesigen kosmischen Wolken, dann zünden ihre Kernschmelzöfen und beginnen, schwere Elemente zu erzeugen. Nach ein paar Millionen Jahren wird das angereicherte Material in den interstellaren Raum zurückgeschleudert, wo die Sternbildung von Neuem beginnen kann.

Die sich ausdehnende Trümmerwolke Cassiopeia A ist ein Beispiel für die Schlussphase im Lebenszyklus eines Sterns. Das Licht der Explosion, bei der dieser Supernovaüberrest entstand, war erstmals vor etwa 350 Jahren am Himmel des Planeten Erde zu sehen, doch das Licht brauchte ungefähr 11.000 Jahre, um uns zu erreichen.

Dieses Falschfarbenbild wurde aus Röntgen-Bilddaten des Röntgenobservatoriums Chandra sowie Daten im sichtbaren Licht des Weltraumteleskops Hubble erstellt. Es zeigt die immer noch heißen Fasern und Knoten im Überrest. In der geschätzten Entfernung von Cassiopeia A ist das Bild zirka 30 Lichtjahre breit.

Die energiereichen Emissionen bestimmter Elemente im Röntgenbereich wurden farbcodiert: Silizium in Rot, Schwefel in Gelb, Kalzium in Grün und Eisen in Violett. Das hilft Astronominnen und Astronomen bei der Erforschung der Wiederverwertung des Sternenmaterials in unserer Galaxis.

Die äußere Explosionswelle, die sich immer noch ausdehnt, ist blau abgebildet. Der helle Fleck nahe der Mitte ist ein Neutronenstern – das ist der unglaublich dichte, kollabierte Überrest des massereichen Sternkerns.

Zur Originalseite

Das Magnetfeld der Strudelgalaxie

Dieses Bild entstand aus Daten des Weltraumteleskops Hubble und dem Stratosphären-Observatorium für Infrarot-Astronomie (SOFIA). Es zeigt Magnetfelder in der Strudelgalaxie M51.

Bildcredit: NASA, SOFIA, HAWC+, Alejandro S. Borlaff, JPL-Caltech, ESA, Hubble; Text: Jayanne English (U. Manitoba)

Beschreibung: Fließen Magnetfelder immer entlang von Spiralarmen? Unser Blick von oben auf die Strudelgalaxie M51 bietet eine spektakulär klare Sicht auf das spiralförmige Wellenmuster in einer scheibenförmigen Galaxie.

Bei Beobachtung mit einem Radioteleskop folgt das Magnetfeld anscheinend den Kurven der Arme. Doch mit dem fliegenden Stratosphären-Observatorium für Infrarot-Astronomie (SOFIA) der NASA wirkt das Magnetfeld, als wäre es am äußeren Rand der Scheibe von M51 über die Spiralarme hinweg verflochten. Die Magnetfelder werden durch ausgerichtete Staubkörnchen erkennbar, weil sie auf Infrarotlicht wie polarisierende Brillen wirken.

Auf diesem Bild wurden die Feldausrichtungen, die aus diesem polarisierten Licht ermittelt wurden, algorithmisch miteinander verbunden, sodass Stromlinien entstehen. Die Begleitgalaxie am oberen Bildrand übt einen Gravitationszug auf das staubhaltige Gas in der rötlichen Sternbildungsregionen aus, die ihr im Bild des Weltraumteleskops Hubble seht. Möglicherweise verstärkt dieser Zug die Turbulenzen und wirbelt den Staub auf, dabei entstehen vielleicht die unerwarteten Feldmuster in den äußeren Armen.

Zur Originalseite