IC 1871 im Seelennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Mark Hanson

Beschreibung: Diese kosmische Nahaufnahme blickt tief in den Seelennebel. Die dunklen, brütenden Staubwolken links sind von hellen Graten aus leuchtendem Gas umrandet und als IC 1871 katalogisiert. Das Teleskopsichtfeld ist ungefähr 25 Lichtjahre groß und zeigt nur einen kleinen Teil des viel größeren Herz- und Seelenebels. Der Sternbildungskomplex liegt ungefähr 6500 Lichtjahre entfernt im Perseus-Spiralarm unserer Milchstraße und ist am Himmel des Planeten Erde im Sternbild Kassiopeia zu sehen.

Die dichten Sternbildungswolken von IC 1871 sind ein Beispiel für ausgelöste Sternbildung, sind entstanden selbst durch die intensiven Winde und die Strahlung der massereichen jungen Sterne in der Region. Dieses Bild erscheint vorwiegend rot, wegen der Emissionen einer bestimmten Farbe des Lichts, das von angeregtem Wasserstoff abgestrahlt wird.

Zur Originalseite

Angeknabberte Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Padraic Koen, Adelaide, Südaustralien

Beschreibung: Die kleinste der drei partiellen Sonnenfinsternisse 2018 fand gestern statt, am Freitag, 13. Juli. Sie war großteils über dem offenen Meer zwischen Australien und der Antarktis sichtbar.

Dieses Videobild einer winzigen Kerbe in der Sonne wurde in Port Elliott (Südaustralien) mit einem H-alpha-Filter zur maximalen Verfinsterung an diesem Ort fotografiert. Dort bedeckte der Neumond etwa 0.16 Prozent der Sonnenscheibe. Die beste Verfinsterung, bei der etwa ein Drittel des Sonnendurchmessers vom Neumond abgedeckt wurde, war in der Ostantarktis in der Nähe von Peterson Bank zu sehen, die beste Sicht hatte wahrscheinlich die lokale Kaiserpinguinkolonie.

In dieser ergiebigen Finsternissaison bringt der nächste Vollmond am 27. Juli eine totale Mondfinsternis, gefolgt von einer weiteren partiellen Sonnenfinsternis zum nächsten Neumond am 11. August.

Zur Originalseite

Wenn Rosen nicht rot sind

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Eric Coles und Mel Helm

Beschreibung: Natürlich sind nicht alle Rosen rot, aber sie können trotzdem sehr hübsch sein. Der schöne Rosettennebel und andere Sternentstehungsgebiete werden in astronomischen Bildern oft überwiegend rot dargestellt, teils, weil die überwiegende Emission im Nebel von Wasserstoffatomen stammt.

Die stärkste optische Wasserstoffemissionslinie, bekannt als H-alpha, liegt im roten Spektralbereich, doch die Schönheit eines Emissionsnebels ist nicht nur im roten Licht zu bewundern. Andere Atome im Nebel werden ebenfalls durch energiereiches Sternenlicht angeregt und erzeugen schmale Emissionslinien.

Auf dieser prächtigen Ansicht des Rosettennebels werden Schmalbandbilder kombiniert, um die Emission von Schwefelatomen in Rot, Wasserstoff in Blau und Sauerstoff in Grün zu zeigen. Das Kartierungsschema dieser schmalen atomaren Emissionslinien in ein breiteres Farbspektrum wird bei vielen Hubblebildern von Sternenkrippen übernommen.

Der Rosettennebel befindet sich ungefähr 3000 Lichtjahre von uns entfernt im Sternbild Einhorn, in dieser Entfernung ist das Bild etwa 100 Lichtjahre breit. Um die Rosette rot zu färben, folgen Sie diesem Link oder bewegen Sie den Mauszeiger über das Bild.

Zur Originalseite

Von Sivan 2 zu M31

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: MDW Sky Survey (David Mittelman, Dennis di Cicco, Sean Walker)

Beschreibung: Dieses Teleskopmosaik von den Innengrenzen des Sternbildes Kassiopeia (links) zur Andromeda (rechts) zeigt mehr als 10 Grad vom Himmel des Planeten Erde. Die Bildfelder, aus denen die Himmelsszene erstellt wurde, sind Teil einer hoch aufgelösten astronomischen Durchmusterung der Milchstraße im H-alpha-Licht.

Die Bearbeitung der monochromatischen Bilddaten brachte die zarten Strukturen relativ unerforschter Fasern aus Wasserstoff in der Region nahe der Ebene unserer Milchstraße zum Vorschein. Der große, aber blasse und relativ unbekannte Nebel Sivan 2 liegt links oben. Die Andromedagalaxie M31 liegt rechts in der Mitte, die schwachen, alles durchdringenden Nebulositäten breiten sich im Vordergrund des weiten Sichtfeldes zu M31 aus. Das breite Durchmusterungsbild zeigt, dass die faszinierenden blassen Wasserstoffwolken, die kürzlich vom Astronomen Rogelio Bernal Andreo abgebildet wurden, tatsächlich innerhalb der Milchstraße liegen – in der Sichtlinie zur Andromedagalaxie.

Zur Originalseite

M82: Galaxie mit supergalaktischem Wind

Die irreguläre Zigarrengalaxie M82 verläuft hell diagonal durchs Bild. In der Mitte leuchten dunkelrote Nebel, die an den Rauch einer Explosion erinnern.

Bildcredit: NASA, ESA, das Hubble-Vermächtnisteam, (STScI/AURA); Danksagung: M. Mountain (STScI), P. Puxley (NSF), J. Gallagher (U. Wisconsin)

Was bringt die Zigarrengalaxie zum Leuchten? Die irreguläre Galaxie wird auch M82 genannt. Bei einer nahen Begegnung in der jüngeren Vergangenheit wurde sie mit der großen Spiralgalaxie M81 aufgemischt. Das erklärt jedoch nicht ganz die Quelle des ausströmenden Gases, das rot leuchtet. Es gibt Hinweise, dass dieses Gas durch die Teilchenwinde vieler Sterne hinausgetrieben wird. Die Sterne erzeugen gemeinsam einen galaktischen Superwind.

Dieses Fotomosaik zeigt eine spezielle Farbe des roten Lichts, das von ionisiertem Wasserstoff abgestrahlt wird. Viele Details der Filamente im Gas sind in diesem Licht sichtbar. Die Fasern sind länger als 10.000 Lichtjahre. Die Zigarrengalaxie ist 12 Millionen Lichtjahre entfernt. Im Infrarotlicht ist sie die hellste Galaxie am Himmel. In sichtbarem Licht ist sie mit einem kleinen Teleskop im Sternbild Große Bärin (Ursa Major) zu sehen.

Zur Originalseite

Über die Sonne

Die Sonne mit Granulation schwebt wie ein Flauschball mitten im Bild. Links oben ist ein Filament, das so lang ist wie die Entfernung zwischen Erde und Mond. Die Sonne ist in Falschfarben dargestellt.

Bildcredit und Bildrechte: Göran Strand

Ein langes Sonnenfilament breitet sich über die relativ ruhige Oberfläche der Sonne aus. Das Teleskopbild stammt vom 27. April. Das negative oder invertierte Schmalbandbild wurde im Licht ionisierter Wasserstoffatome aufgenommen.

Links oben türmt sich ein prächtiger Schleier aus magnetisiertem Plasma über der Oberfläche auf. Er reicht über den Sonnenrand hinaus. Wie lang ist das Sonnenfilament? Es ist fast so lang wie die Entfernung zwischen Erde und Mond. Das zeigt die Skala links.

Das lange Filament wanderte einen Tag später über die Sonnenscheibe nach rechts. Es brach aus und ragte von der Sonnenoberfläche auf. Es stieß auch einen koronalen Massenauswurf (CME) aus. Das wurde von Sonnensatelliten beobachtet. Der CME treibt wahrscheinlich weit neben unserem Planeten vorbei.

Zur Originalseite

Die Wolken des Jägers Orion

Im Bild liegt das berühmte Sternbild Orion, links ist der Kopf, der Bogen ist nach oben gerichtet. Oben ist ein runder roter Nebel, rechts die halbkreisförmige rote Barnardschleife, in der Mitte schräg übereinander die blau leuchtenden Gürtelsterne.

Bildcredit und Bildrechte: Rogelio Bernal Andreo

Die Sternentstehungsgebiete im Jäger Orion sind in kosmischen Staub und leuchtenden Wasserstoff gehüllt. Sie liegen am Rand riesiger Molekülwolken, die etwa 1500 Lichtjahre entfernt sind. Die Aussicht ist etwa 30 Grad breit. Sie zeigt das bekannte Sternbild und seine Umgebung von Kopf (links) bis Fuß (rechts).

Der Orionnebel ist 1500 Lichtjahre entfernt. Er ist die nächstgelegene Sternbildungsregion. Im Bild liegt er rechts über der Mitte. Links daneben sind der Pferdekopfnebel, M78 und Orions Gürtelsterne.

Wenn ihr den Mauspfeil über das Bild schiebt, seht ihr auch den roten Riesenstern Beteigeuze an der Schulter des Jägers. Beim Fuß gleißt der helle, blaue Stern Rigel. Er beleuchtet den Hexenkopfnebel darüber. Links bei Orions Kopf ist der leuchtende Nebel um Lambda Orionis. Der Stern trägt den Namen Meissa.

Der Orionnebel und die hellen Sterne sind leicht mit bloßem Auge sichtbar. Doch die Wolken und Emissionen im ausgedehnten interstellaren Gas im nebelreichen Komplex sind zu blass dafür. Sie sind auch viel schwieriger zu fotografieren. Das Mosaik aus Breitband-Teleskopbildern wurde mit Bilddaten ergänzt, die mit einem Schmalband-H-alpha-Filter aufgenommen wurden. Letztere betonen die überall vorhandenen Ranken aus angeregtem atomarem Wasserstoff, zum Beispiel im Bogen der riesigen Barnard-Schleife.

Zur Originalseite

Orange Sonne sprüht Funken

Das Bild der Sonne wurde invertiert und eingefärbt. Daher ist der orangefarbene Ball in der Mitte dunkler und am Rand sehr hell. Am Rand ragen helle Sonnenfackeln auf, in der Mitte und oben sind größere dunkle Regionen.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Unsere Sonne ist neuerdings ziemlich unruhig. Erst vor zwei Wochen wurde sie fotografiert, als viele stürmische Regionen zu sehen waren. Eine davon war die aktive Sonnenfleckengruppe AR 2036 oben und AR 2038 in der Mitte. Vor erst vier Jahren endete ein ungewöhnlich ruhiges Minimum an Sonnenflecken. Es hatte vier Jahre gedauert.

Dieses Bild entstand in der speziellen Lichtfarbe H-Alpha. Es wurde umgekehrt und gefärbt. Spikulen bedecken die Sonnenvorderseite wie ein Teppich. Zum Rand hin wird die Sonne allmählich heller. Der Effekt entsteht durch die zunehmende Absorption des kühleren Sonnengases. Er wird als Randverdunkelung bezeichnet.

Mehrere faserartige Protuberanzen ragen über die Sonnenränder. An der Vorderseite der Sonne sind Protuberanzen als helle Schlieren zu sehen. Besonders interessant sind die magnetisch verhedderten aktiven Regionen. Dazu gehören relativ kühle Sonnenflecken, die hier als weiße Flecken dargestellt sind.

Ein Sonnenmaximum ist die aktivste Phase im magnetischen 11-Jahres-Zyklus. Beim aktuellen Maximum erzeugt das verworrene Magnetfeld viele „Sonnenfunken”. Dazu zählen ausbrechende Protuberanzen, Koronale Massenauswürfe und Fackeln. Sie stoßen Teilchenwolken aus. Diese können die Erde treffen und Polarlichter auslösen.

Vor zwei Jahren stieß eine Fackel eine Flut geladener Teilchen ins Sonnensystem. Sie war so heftig, dass sie Satelliten stören und Stromnetze gefährden hätten können, wenn sie den Planeten Erde getroffen hätte.

Aktuell: APOD-Vortrag am 17. Juni in Paris

Zur Originalseite