Aufsteigende Raumfähre

Aus einer Wolkendecke steigt ein Abgasstrahl auf. An seiner Spitze ist der leuchtende Feuerschweif der Raumfähre Endeavour. Der Schatten der Rauchfahne fällt auf die Wolken. Hinten ist ein Ozean zu sehen.

Bildcredit: NASA

Was steigt hier aus den Wolken auf? Die Raumfähre. Wer zur richtigen Zeit am richtigen Ort aus dem Fenster eines Flugzeugs geschaut hat, konnte etwas sehr Ungewöhnliches sehen: eine Raumfähre, die zur Umlaufbahn aufsteigt.

Kurz nach dem letzten Start der Endeavour im Mai 2011 wurden Bilder der aufsteigenden Raumfähre mit ihrem Abgasstrahl im Netz herumgereicht. Dieses Bild wurde von der NASA in einem Raumfähren-Trainingsflugzeug fotografiert.

Das Bild ist nicht mit Copyright versehen. Es wurde hoch über den Wolken fotografiert und passt zu einem Bild, das denselben Abgasstrahl des Starts unter den Wolken zeigt. Unter der aufsteigenden Raumfähre seht ihr heiße, leuchtende Abgase der Triebwerke und eine lange Rauchfahne. Der Schatten der Rauchfahne fällt auf die Wolkendecke und zeigt die Richtung der Sonne.

Das Space-Shuttle-Programm endete 2011. Die Endeavour ist nun im Kalifornischen Wissenschaftszentrum ausgestellt.

Zur Originalseite

Zwei Welten, eine Sonne

Zwei Bildfelder zeigen einen Sonnenuntergang auf der Erde (links) und auf dem Mars (rechts). Der Sonnenuntergang auf dem Mars wirkt sehr bläulich und ungewohnt.

Bildcredit und Bildrechte – linkes Bild: Damia Bouic; rechtes Bild: NASA, JPL-Caltech, MSSS; Digitale Bearbeitung: Damia Bouic

Wie sehr unterscheiden sich Sonnenuntergänge auf dem Mars und auf der Erde? Zum Vergleich wurden zwei Bilder unseres alltäglichen Sterns bei Sonnenuntergang fotografiert. Ein Bild entstand auf der Erde und eines auf dem Mars. Diese Bilder wurden auf die gleiche Winkegröße skaliert. Sie sind hier Seite an Seite dargestellt.

Ein kurzer Blick zeigt, dass die Sonne auf dem Mars kleiner wirkt als auf der Erde. Das ist einleuchtend, da der Mars 50% weiter von der Sonne entfernt ist als die Erde. Noch auffälliger ist, dass der Sonnenuntergang auf dem Mars um die Sonne herum merklich bläulicher wirkt als die typischen orangen Farben um die untergehende Sonne auf der Erde. Der Grund für die blauen Farbtöne auf dem Mars ist nicht vollständig erklärbar. Er hängt vermutlich mit den Eigenschaften des Marsstaubs zusammen, der Licht nach vorne streut.

Der irdische Sonnenuntergang wurde im März 2012 im französischen Marseille fotografiert. Der Mars-Sonnenuntergang wurde letzten Monat von der robotischen NASA-Raumsonde Curiosity im Krater Gale auf dem Mars fotografiert.

Zur Originalseite

Die Erde bei einer totalen Sonnenfinsternis

Hinter dem Canadarm2 der Internationalen Raumstation fällt der Schatten des Mondes auf die Erde. Die Menschen im Schatten sahen eine Sonnenfinsternis.

Bildcredit: Besatzung Expedition 12, NASA

Wie sieht die Erde bei einer totalen Sonnenfinsternis aus? Sie ist in der Region, wo Menschen die Finsternis sehen, dunkel, weil der Schatten des Mondes dorthin fällt. Der Schattenkegel rast mit fast 2000 km/h über die Erde. Er verdunkelt für wenige Minuten die Orte auf seinem Pfad, bevor er weiterwandert.

Das Bild zeigt den Blick von der Internationalen Raumstation ISS auf die Erde bei der totalen Sonnenfinsternis im März 2006. Am Freitag wandert der Mond wieder einmal vor die Sonne und wirft einen verzerrten runden Schatten darauf. Er zieht diesmal über Teile des Nordatlantiks.

Zur Originalseite

Porträt des Sonnensystems

Das Mosaik entstand aus Bildern der Raumsonde Voyager 1. Es zeigt die Planeten des Sonnensystems bis auf Merkur und Mars. Details sind in den Bildeinschüben gezeigt.

Bildcredit: Voyager-Projekt, NASA

Vor 25 Jahren blickte die Raumsonde Voyager 1 am Valentinstag ein letztes Mal zurück. Dabei fotografierte sie dieses allererste Familienporträt des Sonnensystems. Die Sonde war damals 43 Astronomische Einheiten (AE) von der Sonne entfernt. Das ganze Porträt ist ein Mosaik aus 60 Bildern. Sie wurden aus einem Winkel von 32 Grad über der Ekliptik fotografiert.

Die Bilder von Voyagers Weitwinkelkamera tasten links das innere Sonnensystem ab. Rechts reicht das Bild bis zum Gasriesen Neptun. Er ist der äußerste Planet im Sonnensystem. Die Buchstaben zeigen die Positionen von Venus, Erde, Jupiter, Saturn, Uranus und Neptun. Die Sonne ist der helle Fleck mitten im Kreis der Bildfelder. Die Bildeinschübe für jeden der Planeten stammen von Voyagers Schmalbildkamera.

Merkur fehlt auf diesem Porträt. Er ist für die Beobachtung zu nahe an der Sonne. Auch Mars ist leider im Sonnenlicht verborgen, das vom optischen System der Kamera gestreut wurde. Der kleine, blasse Pluto war zu dieser Zeit näher an der Sonne als Neptun. Seine Position wurde nicht erfasst.

Zur Originalseite

ISS-Innenschau

Im Inneren der Cupola ist ein Steuerplatz für den Canadarm2 der ISS. Durch 7 Fenster hat man einen prachtvollen Ausblick auf die Erde.

Bildcredit: NASA, Expedition 42

Manche mögen Fenster. Diese Fenster sind die besten, die es an Bord der Internationalen Raumstation ISS gibt. Der Schnappschuss vom 4. Jänner zeigt das Innere des großen Kuppelmoduls der Station mit sieben Fenstern und einem Arbeitsplatz zur Steuerung des Canadarm2.

Der Roboterarm ist durch das rechte Fenster zu sehen. Er dient dem Verankern eintreffender Raumtransporter und unterstützt die Astronautinnen* bei Außenbordeinsätzen.

Die Cupola ist an der erdzugewandten Seite befestigt, am Nadir-Andockplatz des Tranquility-Moduls der Raumstation. Es zeigt bewegte Panoramen unseres Planeten. Über der Mitte ist der helle Rand der Erde zu sehen. Ein Umlauf in einer Höhe von durchschnittlich 400 Kilometern dauert 90 Minuten.

Zur Originalseite

Die Potsdamer Schwerekartoffel

Das Bild zeigt eine deformierte Kugel mit den Kontinenten, vorne liegt Afrika. Die Meere sind farbcodiert von rot über orange und gelb bis blau.

Bildcredit: CHAMP, GRACE, GFZ, NASA, DLR

Warum ist das Erdschwerefeld an manchem Orten auf der Erde stärker als an anderen? Manchmal ist der Grund dafür nicht bekannt. Um die Erdoberfläche besser zu verstehen, machten die Satelliten GRACE und CHAMP genaue Messungen. Daraus wurde eine genaue Karte vom Schwerefeld der Erde erstellt.

Nun befindet sich ein Zentrum der Untersuchung dieser Daten in der deutschen Stadt Potsdam. Außerdem sieht die Erde im Ergebnis wie eine Kartoffel aus. Daher wurde das Geoid Potsdamer Schwerekartoffel genannt.

Hohe Gebiete sind auf der Karte rot gefärbt. Sie zeigen Orte, an denen die Gravitation etwas stärker ist als sonst. In blauen Regionen ist die Gravitation etwas geringer als anderswo. Viele Beulen und Täler auf der Potsdamer Gravitationskartoffel gehen mit Strukturen auf der Oberfläche einher. Dazu gehören der Nord- und Mittelatlantische Rücken oder der Himalaja.

An anderen Orten erkennt man keinen Zusammenhang. Diese Strukturen könnten Stellen mit ungewöhnlich hoher oder geringer Dichte unter der Oberfläche sein.

Solche Karten helfen, die Veränderung der Erdoberfläche zu kalibrieren. Man kann so Änderungen der Meeresströmungen und das Schmelzen der Gletscher kartieren. Diese Karte wurde 2005 erstellt. Es gibt auch eine aktuellere, genauere Gravitationskarte der Erde aus dem Jahr 2011.

Zur Originalseite

Mond und Erde, gesehen von Chang’e 5-T1

Zwei kugelförmige Himmelskörper sind im Bild, vorne der Mond, den wir von hinten sehen, oben klein die blau-weiße Erde.

Bildcredit: Nationale Raumfahrtbehörde Chinas, Xinhuanet

Gelegentlich wurde sie als große blaue Murmel bezeichnet. Aus manchen Blickwinkeln sieht die Erde eher wie eine kleine blaue Murmel aus, zum Beispiel auf diesem kultigen Bild des Erde-Mond-Systems. Es wurde letzte Woche von der Mission Chang’e 5-T1 fotografiert.

Der Mond erscheint größer als die Erde, weil er der Kamera der Raumsonde viel näher war. Er zeigt einen großen Teil der Oberfläche, der vor der Erde verborgen ist. Verglichen mit dem stärker reflektierenden bunten Planeten, den er umrundet, wirkt er dunkel und grau.

Die Roboter-Raumsonde Chang’e 5-T1 ist vorwiegend eine Technik-Testmission. Sie umrundete letzten Dienstag den Mond und kehrte am Freitag zur Erde zurück.

Zur Originalseite

Detektor AMS misst rätselhaften Überschuss an Positronen

Mitten im Bild ist der AMS-Detektor an Bord der Internationalen Raumstation ISS. Von der Raumstation sind Paneele und Module zu sehen. Rechts ist eine Raumfähre angedockt, dahinter schimmert die blaue Erde. Links oben strahlt die Sonne im schwarzen Weltraum.

Bildcredit und Lizenz: Ron Garan, Besatzung STS-134, Besatzung Expedition 28, NASA

Woher stammen all diese energiereichen Positronen? Das Alpha-Magnet-Spektrometer (AMS-02) an Bord der Internationalen Raumstation ISS vermerkte genau, wie oft es seit 2011 von energiereichen Elektronen und Positronen getroffen wurde. Nach jahrelanger Datensammlung ist nun klar, dass es in den höchsten Energieniveaus, die beobachtet wurden, deutlich mehr Positronen als Elektronen gibt.

Der Überschuss hat vielleicht eine sehr aufregende und tiefgründige Ursache: Es könnte sich um Teilchen Dunkler Materie handeln, die zuvor unentdeckt waren, und die zerstrahlten. Möglich ist aber auch, dass die unerklärliche Abweichung von astronomischen Quellen stammt, zum Beispiel Pulsaren. Das Thema wird sehr aktiv beforscht.

Das Bild zeigt das Instrument AMS kurz nach seiner Installation auf der ISS. Rechts ist eine US-Raumfähre angedockt, links eine russische Sojus-Kapsel. Im Hintergrund leuchtet die blaue Erde. Sie ist die Heimat aller Nationen.

Zur Originalseite