M101 im 21. Jahrhundert

Die Feuerradgalaxie M101 füllt das Bild. Ihre Spiralarme sind auf dieser Aufnahme von hellrot leuchtenden Sternbildungsgebieten gesäumt, nach außen hin verlaufen sie blau, was offene Sternhaufen andeutet.

Bildcredit: NASA, ESA, CXC, JPL, Caltech STScI

Die große, schöne Spiralgalaxie M101 ist einer der letzten Einträge in Charles Messiers berühmtem Katalog. Doch sie ist nicht unbedeutend. Die Galaxie ist gewaltige 170.000 Lichtjahre groß. Sie misst also fast doppelt so viel wie unsere Milchstraße. M101 war einer der Spiralnebel, die mit Lord Rosses großem Teleskop beobachtet wurden. Das Teleskop war der Leviathan von Parsonstown aus dem 19. Jahrhundert.

Diese Ansicht des großen Inseluniversums entstand in mehreren Wellenlängen. Sie ist im Vergleich dazu ein Komposit aus Bildern, die im 21. Jahrhundert von Weltraumteleskopen aufgenommen wurden. Die Bilddaten sind farbcodiert, von Röntgenstrahlen bis Infrarotwellenlängen (hohe bis niedrige Energie). Sie stammen vom Röntgenobservatorium Chandra (violett), dem Galaxy Evolution Explorer (GALEX, blau) sowie den Weltraumteleskopen Hubble (gelb) und Spitzer (rot).

Die Röntgendaten zeigen Gas um explodierte Sterne, Neutronensterne und Doppelsternsysteme mit Schwarzen Löchern in M101. Dieses Gas ist viele Millionen Grad heiß. Die Daten mit niedriger Energie zeigen Sterne und Staub, aus denen die prächtigen Spiralarme von M101 bestehen.

M101 ist auch als Feuerradgalaxie bekannt. Sie liegt etwa 25 Millionen Lichtjahre entfernt im nördlichen Sternbild Große Bärin (Ursa Major).

(Hinweis der Herausgeber: Das Bild, das ursprünglich hier gezeigt war, wurde am 25. Jänner zurückgezogen.)

Zur Originalseite

Infrarotporträit der Großen Magellanschen Wolke (GMW)

Das Infrarotbild des Weltraumteleskops Herschel zeigt die Große Magellansche Wolke als turbulente Staubwolke mit einigenhell leuchtenden Stellen.

Bildcredit: ESA / NASA / JPL-Caltech / STScI

Kosmische Staubwolken kräuseln dieses Infrarotporträt der Großen Magellanschen Wolke (GMW). Sie ist eine Begleitgalaxie der Milchstraße. Das tolle Kompositbild stammt von den Weltraumteleskopen Herschel und Spitzer. Es zeigt, dass die benachbarte Zwerggalaxie voller Staubwolken ist, ähnlich wie der Staub in der Ebene der Milchstraße. Die Temperaturen im Staub zeigen meist die Aktivität von Sternbildung.

Die Spitzer-Daten sind blau dargestellt. Sie zeigen warmen Staub, der von jungen Sternen erwärmt wird. Herschels Instrumente lieferten die rot und grün gezeigten Bilddaten. Sie zeigen Staubemissionen von kühleren Regionen, die dazwischen liegen. Dort beginnt die Sternbildung gerade erst, oder sie hat bereits aufgehört.

Das Infrarotbild der Großen Magellanschen Wolke zeigt die Emissionen von Staub sehr deutlich. Die Ansicht unterscheidet sich stark von Aufnahmen im sichtbaren Licht. Der bekannte Tarantelnebel in der Galaxie sticht immer noch heraus. Man erkennt ihn leicht, er ist die hellste Region links neben der Mitte. Die Große Magellansche Wolke ist an die 160.000 Lichtjahre entfernt und etwa 30.000 Lichtjahre groß.

Zur Originalseite

Sonnensturm: Ein koronaler Massenauswurf (KMA)

In der Mitte befindet sich eine Kugel, die aussieht, als wäre sie aus Gold. Außen herum sind rote und weiße Schlieren, die den Sonnenwind darstellen.

Bildcredit: NASA, ESA, SOHO-Arbeitsgruppe

Was spelt sich da auf der Sonne ab? Wieder einmal ein koronaler Massenauswurf (KMA). Die Raumsonde SOHO kreist um die Sonne. Sie fotografierte viele Filamente, die ausbrachen. Solche Filamente steigen von der aktiven Sonnenoberfläche auf und schleudern gewaltige Blasen aus magnetischem Plasma in den Weltraum.

Das Bild stammt aus dem Jahr 2002. Innen ist das direkte Sonnenlicht abgedeckt. Es wurde durch ein ähnliches Bild der Sonne im Ultraviolettlicht ersetzt. Das Sichtfeld zeigt Bereiche, die mehr als zwei Millionen Kilometer von der Sonnenoberfläche entfernt sind. Die explosionsartigen Ereignisse werden als koronale Massenauswürfe oder KMA bezeichnet. Raumsonden lieferten Anfang der frühen 1970er-Jahre erste Hinweise auf KMA.

Das dramatische Bild stammt aus einer detaillierten Aufnahme, welche die Raumsonde SOHO von diesem KMA machte. Um das Maximum an Sonnenaktivität treten mehrmals pro Woche KMA auf. Heftige KMA können das Weltraumwetter stark beeinflussen. Wenn sie auf unseren Planeten gerichtet sind, zeigen sie oft starke Auswirkungen.

Zur Originalseite

Die Kepler-Planetenmaschine IV


Videocredit und -rechte: Ethan Kruse (Universität von Washington)

Die Mission Kepler sucht nach Exoplaneten. Sie fand viele Kandidaten und bestätigte Systeme mit mehreren Planeten. Die Gesamtzahl beläuft sich auf 1705 Welten, die um 685 ferne Sterne kreisen. All diese Bahnen von Exoplaneten wurden im gleichen Maßstab abgebildet, auch ihre relativen Bahnbewegungen sind hier gezeigt. Das Gesamtbild nennt man die Kepler-Planetenmaschine IV.

Damit man auch die Planeten sieht, sind ihre Größen nicht maßstabsgetreu abgebildet. Die Planetenbahnen im Sonnensystem sind als strichlierte Linien hinterlegt. Das veranschaulicht den Maßstab im animierten Video. Kepler entdeckt Exoplaneten durch Planetentransite. Dazu sucht man nach leichten Abschwächungen des Lichts. Sie entstehen, wenn der Planet vor seinem Stern vorbeizieht.

Das Zeitraffervideo zeigt die Bahnen aller Systeme mit mehreren Planeten, die Kepler entdeckte. Sie sind so ausgerichtet, dass die Transite, bei denen man sie entdeckte, auf der Drei-Uhr-Position liegen. Die Bewegungen erinnern an einen Tanz der Derwische. Sie zeigen den starken Unterschied zwischen den meisten Systemen der Kepler-Exoplaneten und unserem System.

Plant ihr eine interstellare Reise? Prüft zuerst die Größenordnung links oben. Der Farbcode zeigt die mittlere Temperatur auf der Oberfläche der Planeten. Sie wurde anhand der Größen der Bahnen und der Heimatsterne geschätzt.

Zur Originalseite

Gammastrahlen-Regen von 3C 279

Bildcredit: NASA, DOE, International Fermi LAT Collaboration

Wenn Gammastrahlen Regentropfen wären, sieht der Ausbruch eines sehr massereichen Schwarzen Lochs etwa so aus. Nicht besonders sanft fielen von 14. bis 16. Juni Photonen von Gammastrahlung auf das Weltraumteleskop Fermi, das Gammastrahlen misst. Die Energie der Photonen reichte bis 50 Milliarden Elektronenvolt. Sie stammten von der aktiven Galaxie 3C 279, die etwa 5 Milliarden Lichtjahre entfernt ist.

Jeder „Tropfen“ der Gammastrahlung ist in dieser Zeitraffer-Visualisierung ein wachsender Kreis. Seine Farbe und die maximale Größe zeigen die gemessene Energie des Gammastrahls. Es beginnt mit einem leichten Nieseln im Hintergrund. Plötzliche kommt ein Platzregen, der dann wieder abebbt. Es ist der heftige, energiereiche Ausbruch.

Die kreative, beruhigende Präsentation des historisch hellen Ausbruchs zeigt einen 5 Grad breiten Bereich am Gammastrahlen-Himmel. Er ist auf 3C 279 zentriert.

Zur Originalseite

An der Grenze der Auflösung

Am Okular eines riesigen Teleskops steht ein Astronom. Er testet die neue adaptive Optik MagAO am Magellan-Clay-Teleskop am Las-Campanas-Observatorium mit dem Doppelsternsystem Alpha Centauri.

Bildcredit und Bildrechte: Yuri Beletsky (Las Campanas Observatory, Carnegie Institution)

Wolltet ihr immer schon einmal durch das Okular eines großen Teleskops im All sehen? Dabei hättet ihr einen scharfen Ausblick mit begrenzter Beugung. Beobachter auf der Erde plagt die Unschärfe der Atmosphäre. Davon befreit, wäre die Winkelauflösung nur durch die Wellenlänge des Lichts und den Durchmesser des Teleskops begrenzt – egal ob Linse oder Spiegel. Je größer der Durchmesser, desto schärfer das Bild.

Doch bei dem irdischen Teleskop auf dem Schnappschuss wird ein neues aktives adaptives Optiksystem (MagAO) verwendet. Es hebt die Weichzeichnung durch die Atmosphäre auf.

Bei der visuellen Beobachtung des berühmten Doppelsternsystems Alpha Centauri testete der Astronom Laird Close das Systems am Okular des Magellan-Clay-Teleskops am Las-Campanas-Observatorium. Es hat einen 6,5 Meter großen Spiegel. Dabei sah er eine historische Ansicht, die nur durch die Auflösung begrenzt war. Sie ist im Einschub gezeigt. Das enge Doppelsternsystems war visuell deutlich getrennt. Der Astronom musste dazu nicht in den niedrigen Erdorbit reisen.

Zur Originalseite

Infraroter Orion von WISE

Dieses Bild des Orionnebels wirkt fremdartig, weil es in Infrarot aufgenommen wurde. Der Nebel wirkt stark gefasert, die markanten Staubwolken wurden hellbraun gefärbt und leuchten im Inneren rot.

Bildcredit: WISE, IRSA, NASA; Berarbeitung und Bildrechte: Francesco Antonucci

Der große Orionnebel ist ein faszinierender Ort. Mit bloßem Auge ist er ein kleiner, verschwommener Fleck im Sternbild Orion. Das Mosaik in Falschfarben entstand aus vier Einzelbildern. Sie wurden vom Observatorium WISE im Erdorbit in verschiedenen Wellenlängen von Infrarot aufgenommen. Es zeigt den Orionnebel als hektische Umgebung mit neu entstandenen Sternen, heißem Gas und dunklem Staub.

Die Energie in einem großen Teil des Orionnebels (M42) stammt von den Sternen des Trapez-Haufens. Sie liegen mitten in diesem Weitwinkelbild. Die hellen Sterne sind hier in ein orangefarbenes Leuchten gehüllt. Es ist ihr eigenes Sternenlicht, das von komplexen Staubfasern reflektiert wird. Die Staubfasern bedecken einen Großteil der Region.

Zum aktuellen Wolkenkomplex im Orionnebel gehört auch der Pferdekopfnebel. Er löst sich in den nächsten 100.000 Jahren langsam auf.

Zur Originalseite

Gammastrahlen-Erde und -Himmel

Der gelbe Rand ist die helle Gammastrahlung von der Erde. Diagonal in der Mitte verläuft die Milchstraße. Das Bild ist eine Kleiner-Planet-Projektion aus Daten des Gammastrahlenteleskops Fermi im Weltraum.

Bildcredit: International Fermi Large Area Telescope Collaboration, NASA, DOE

Gammastrahlen sind die energiereichste Form von Licht. Für ein Gammastrahlenteleskop im Erdorbit ist die Erde die hellste Lichtquelle.

Die kosmische Strahlung aus dem All besteht aus Teilchen. Wenn energiereiche Teilchen auf die Atmosphäre prallen, verströmt die Erde Gammastrahlen. Diese Wechselwirkung schützt die Erdoberfläche vor gefährlicher Strahlung.

Diese ungewöhnliche Ansicht von Erde und Himmel entstand mit dem Large Area Telescope des Gammastrahlenobservatoriums Fermi in der Umlaufbahn. Sie wird von Gammastrahlen bestimmt. Die Beobachtungsdaten für dieses Bild wurden aufgenommen, wenn das Zentrum unserer Milchstraße nahe am Zenit stand, also direkt über dem Satelliten Fermi. Im Bild befindet sich der Zenit in der Bildmitte.

Die Erde und der Nadir befinden sich genau unter dem Satelliten. Sie verlaufen am Rand des Bildes. So entstand eine Projektion der Erde und des ganzen Himmels aus Fermis Blickwinkel in der Umlaufbahn.

Das Farbschema hat eine logarithmische Skala. Gammastrahlen mit geringer Intensität wird in Blau gezeigt. Strahlung mit hoher Intensität ist in gelblichen Farbtönen abgebildet. Das hellere Gammastrahlenleuchten unseres Planeten flutet den Rand des Bildfeldes. Der intensiv gelbe Ring zeigt den Erdrand. Gammastrahlenquellen am Himmel in der relativ blassen Milchstraße sind diagonal über die Mitte verteilt.

Fermi wurde am 11. Juni 2008 gestartet, um das energiereiche Universum zu erforschen. Diese Woche feierte Fermi den 2000. Tag im niedrigen Erdorbit.

Zur Originalseite