Der lange Strahl des Leuchtturm-Nebels

Der Leuchtturmnebel ist im Bild rechts unten abgebildet, der Supernovaüberrest, von dem er ausgeschleudert wurde, leuchtet links oben. Alle Nebel im Bild sind violett abgebildet.

Röntgen-Bildcredit: NASA / CXC / ISDC / L. Pavan et al.

Der Leuchtturm-Nebel entstand durch den Wind eines Pulsars. Das ist ein schnell rotierender, magnetischer Neutronenstern. Dieser Pulsar rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde durchs interstellare Medium. Pulsar und Windnebel sind als IGR J11014−6103 katalogisiert. Sie sind etwa 23.000 Lichtjahre von uns entfernt und befinden sich im südlichen Sternbild Carina. Dieses Bild des Röntgenobservatoriums Chandra zeigt die beiden rechts unten.

Der Wind fegt geladene Teilchen, die der Pulsar erzeugte, in einen kometenartigen Schweif, der nach links oben zieht. Es verläuft die Gegenrichtung der Bewegung des Pulsars, der sich vom Supernovarest seiner Herkunft fortbewegt. Sowohl der ausreißende Pulsar als auch das sich ausdehnende Geröllfeld vom Supernovaüberrest entstanden durch die Explosion eines massereichen Sterns nach dem Kern-Kollaps. Bei der Supernova-Explosion wurde der Pulsar hinausgeschleudert.

Zur Szenerie kosmischer Extreme gehört auch ein langer, gewundener Strahl. Er ist fast 37 Lichtjahre lang und steht in einem fast rechten Winkel zur Bewegung des Pulsars. Der energiereiche Teilchenstrahl ist der längste, der je bei einem Objekt in unserer Galaxis beobachtet wurde.

Zur Originalseite

Das Zentrum von Auriga

Leuchtend rote Nebel und blaue Sternhaufen an der Grenze der Sternbilder Stier und Fuhrmann sind hier abgebildet: Simeis 147, IC 410, M36, M38 und NGC 1893.

Bildcredit und Bildrechte: Rogelio Bernal Andreo (Deep Sky Colors)

Das antike Sternbild Fuhrmann (Auriga) ist reich an Sternhaufen und Nebeln. Es reitet hoch am nördlichen Winternachthimmel. Diese detailreiche Mosaik-Teleskopansicht wurde im Jänner fotografiert. Am Himmel ist sie fast 24 Vollmonde (12 Grad) breit. Sie zeigt einige Ansichten im Fuhrmann, die bei kosmischen Touristen sehr beliebt sind. Das dicht gedrängte Feld reicht über die Ebene der Milchstraße in die Richtung gegenüber dem Zentrum der Galaxis.

Möchtet ihr eine Wegbeschreibung? Der helle, bläuliche Stern Elnath am unteren Bildrand liegt an der Grenze zwischen Fuhrmann und Taurus, dem Stier. Er ist sowohl als Beta Tauri als auch Gamma Aurigae bekannt. Links bedecken die verschlungenen Fasern des Supernovarestes Simeis 147 etwa 150 Lichtjahre. Simeis 147 ist fast 300 Lichtjahre entfernt. Rechts findet ihr den Emissionsnebel IC 410. Er ist wesentlich weiter entfernt, nämlich ungefähr 12.000 Lichtjahre.

In IC 410 entstehen Sterne. Der junge Sternhaufen NGC 1893 ist darin eingebettet. Bekannt sind auch kaulquappenförmige Wolken aus Staub und Gas. Der Flammensternnebel IC 405 ist nur ein wenig weiter entfernt. Seine roten, verschlungenen Wolken aus leuchtendem Wasserstoff werden vom heißen O-Stern AE Aurigae angeregt. Zwei offene Sternhaufen, M36 und M38 nach Charles Messier, sind oben im Sternfeld aufgereiht. Sie werden oft mit Fernglas betrachtet.

Zur Originalseite

Ein Gespenst im östlichen Schleier

Eine schaurige Fratze in roten und blauen Farbtönen spukt im Schleiernebel im Sternbild Schwan.

Bildcredit und Bildrechte: Alfonso Carreño (Observatorio Zonalunar)

Fürchterliche Formen und schaurige Fratzen markieren die Zeit um Halloween. Sie spuken auch auf dieser kosmischen Nahaufnahme im östlichen Schleiernebel.

Der Schleiernebel ist ein großer Supernovarest. Das ist die sich ausdehnende Trümmerwolke, die entsteht, wenn ein massereicher Stern am Ende seiner Existenz explodiert. Der Schleier ist ungefähr kreisförmig. Er bedeckt am Himmel im Sternbild Schwan fast 3 Grad.

Dieser Teil im östlichen Schleier ist nur 1/2 Grad breit, also scheinbar so groß wie der Mond. Die geschätzte Entfernung des Schleiers vom Planeten Erde beträgt beruhigende 1400 Lichtjahre. Bei dieser Distanz und Größe ist der Nebel 12 Lichtjahre groß.

Das Komposit entstand aus Bilddaten, die mit Schmalbandfiltern aufgenommen wurden. Darauf sind Emissionen von Wasserstoffatomen im Überrest rot abgebildet. Die starken Emissionen von Sauerstoffatomen sind in blaugrünen Farbtönen dargestellt. Im westlichen Teil des Schleiers findet man eine weitere jahreszeitliche Erscheinung, den Hexenbesen.

Zur Originalseite

Fasern im Vela-Supernovarest

Das Bild ist dicht mit Sternen gesprenkelt. Dazwischen verlaufen Bögen, die blau und magentafarben leuchten. Einige Sterne sind heller und heben sich vom Sternenteppich im Hintergrund ab.

Bildcredit und Bildrechte: Angus Lau, Y Van, SS Tong (Jade Scope Observatory)

Die Explosion ist vorbei, aber es gibt noch Nachwirkungen. Vor etwa elftausend Jahren sah man einen Stern im Sternbild Segel des Schiffs explodieren. Dabei bildete er einen seltsamen Lichtpunkt. Kurz war er für die Menschen zu Beginn der Geschichtsaufzeichnung sichtbar.

Die äußeren Schichten des Sterns prallten auf das interstellare Medium und trieben eine Stoßwelle vor sich her, die wir noch heute sehen. Im Röntgenlicht ist eine annähernd kugelförmige Stoßwelle sichtbar, die sich ausdehnt. Dieses Bild zeigt einen Teil der faserartigen, gewaltigen Stoßfront im sichtbaren Licht.

Während das Gas vom explodierten Stern forttreibt, zerfällt es, reagiert dabei mit dem interstellaren Medium und erzeugt Licht in vielen verschiedenen Farben und Spektralbereichen. Im Zentrum des Vela-Supernovarestes blieb ein Pulsar zurück. Ein Pulsar ist ein Stern, der so dicht ist wie Kernmaterie. Er rotiert mehr als zehnmal pro Sekunde um sich selbst.

Hinweis: So könnt ihr APOD lesen, wenn der Regierungsserver heruntergefahren wird

Zur Originalseite

M1: Der unglaublich expandierende Krebs

Ein Nebel mit vielen Fasern und einem weißlichen Nebel in der Mitte leuchtet vor einem Hintergrund, der lose mit Sternen gesprenkelt ist.

Bildcredit und Bildrechte: Adam Block, Mt. Lemmon SkyCenter, U. Arizona

Der Krebsnebel ist als M1 katalogisiert. Er ist der erste auf Charles Messiers berühmter Liste an Dingen, die keine Kometen sind. Heute ist der Krabbennebel als Supernovaüberrest bekannt, das ist eine sich ausdehnende Trümmerwolke, die nach der Explosion eines massereichen Sterns entstand. Die gewaltsame Entstehung der Krabbe wurde 1054 beobachtet. Heute hat der Nebel einen Durchmesser von ungefähr 10 Lichtjahren. Er expandiert immer noch mit mehr als 1000 Kilometern pro Sekunde.

Möchtet ihr sehen, wie sich der Krebsnebel ausdehnt? Das zeigt diese Videoanimation (vimeo). Dafür wurde ein Bild von M1, das 1999 an der Europäischen Südsternwarte ESO fotografiert wurde, mit dem hier gezeigten Bild verglichen, das 2012 am Mt. Lemmon Sky Center entstand. Die beiden Bilder wurden an den Hintergrundsternen ausgerichtet.

Der Krebsnebel ist etwa 6500 Lichtjahre entfernt und befindet sich im Sternbild Stier (Taurus).

Zur Originalseite

NGC 6960: Der Hexenbesennebel

Von links oben nach rechts unten verläuft ein Nebelrand, der ein wenig an einen Wasserfall erinnert. Die Fasern sind bläulich-glatt, darunter sind wolkige rosarote Strukturen, im Hintergrund viele kleine Sterne.

Bildcredit und Bildrechte: Martin Pugh (Heaven’s Mirror Observatory)

Vor zehntausend Jahren, noch vor Beginn der Geschichtsaufzeichnung, blitzte plötzlich ein neues Licht am Nachthimmel auf. Nach wenigen Wochen verblasste es wieder. Heute wissen wir, dass dieses Licht von einer Supernova stammte, das ist ein explodierender Stern. Die sich ausdehnende Trümmerwolke wird als Supernovaüberrest bezeichnet. Sie trägt den Namen Schleiernebel.

Das scharfe Teleskopbild zeigt ein westliches Segment des Schleiernebels. Es ist als NGC 6960 katalogisiert. Weniger formell wird es Hexenbesennebel genannt. Bei der heftigen Explosion wurde eine interstellare Stoßwelle ausgeschleudert. Sie pflügt durch den Raum, fegt die interstellare Materie zusammen und regt sie an.

Die leuchtenden Fasern wurden mit Schmalbandfiltern abgebildet. Sie sind wie lang gezogene Wellen in einem Laken, das fast von der Seite zu sehen ist. Ihr Licht ist auffallend in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün) aufgeteilt.

Der ganze Supernovaüberrest ist etwa 1400 Lichtjahre entfernt. Man sieht ihn im Sternbild Schwan (Cygnus). Der Hexenbesen ist insgesamt etwa 35 Lichtjahre groß. Der helle Stern im Bild ist 52 Cygni. Man sieht ihn an dunklen Orten mit bloßem Auge. Er steht in keinem Zusammenhang mit dem urzeitlichen Supernovarest.

Zur Originalseite

Keplers Supernovaüberrest im Röntgenlicht

Mitten im Bild strahlt eine blau-türkis-violette Wolke. Sie entstand an der Stelle, wo Kepler vor etwa 400 Jahren eine Supernova beobachtete.

Bildcredit: Röntgenstrahlen: NASA/CXC/NCSU/M. Burkey et al.; sichtbares Licht: DSS

Wie entstand dieses Chaos? Ein Stern explodierte. Dabei entstand dieser ungewöhnlich geformte Nebel. Dieser ist Keplers Supernovaüberrest. Zu welcher Art Sterne gehörte er?

Bei einer Sternexplosion entstand diese energiereiche kosmische Wolke. Das Licht der Explosion war erstmals im Oktober 1604 auf dem Planeten Erde zu sehen. Das war vor etwa vierhundert Jahren. Die Supernova leuchtete am Himmel des frühen 17. Jahrhunderts im Sternbild Schlangenträger. Der helle neue Stern wurde vom Astronomen Johannes Kepler und seinen Zeitgenossen beobachtet. Sie suchten nach einer Erklärung für die himmlische Erscheinung. Damals gab es keine Unterstützung von Teleskopen.

Im frühen 21. Jahrhunderts wird die sich ausdehnende Trümmerwolke weiterhin untersucht. Forschende haben ein neues Verständnis der Sternentwicklung. Außerdem helfen ihnen Weltraumteleskope. Damit beobachten sie Keplers Supernovaüberrest im gesamten Spektrum.

Aktuelle Röntgendaten und Bilder des Kepler-Supernovaüberrestes wurden mit dem Röntgenobservatorium Chandra im Erdorbit aufgenommen. Diese Daten zeigen eine Häufigkeit der Elemente, die für eine Typ-Ia-Supernova sprechen. Somit war der Erzeuger ein weißer Zwergstern. Er explodierte, weil er zu viel Materie von einem begleitenden Roten Riesen aufnahm. Dabei überschritt er die Chandrasekhar-Grenze.

Die Kepler-Supernova ist etwa 13.000 Lichtjahre entfernt. Sie ist jüngste Sternexplosion in der Milchstraße.

Zur Originalseite

Röntgenstrahlen des Supernovaüberrestes SN 1006

Bildfüllend ist ein rotes, rundes Objekt dargestellt. Es erinnert an eine Quaste aus Wolle und ist am Rand von einer schimmernden Oberfläche überzogen.

Bildcredit: NASA/CXC/P. Frank Winkler (Middlebury-College)

Es sieht wie ein Bovist aus. Doch es ist der Überrest einer der sicherlich hellsten Supernovae der Geschichte. 1006 n. Chr. wurde sie als Aufhellung am Nachthimmel über Regionen beschrieben, die nun als China, Ägypten, Irak, Italien, Japan und die Schweiz bekannt sind.

Die sich ausdehnende Trümmerwolke im südlichen Sternbild Wolf (Lupus) stammt von der Explosion. Sie bietet immer noch ein kosmisches Spektakel im gesamten elektromagnetischen Spektrum.

Dieses Bild entstand aus Aufnahmen in drei Farben des Röntgenlichts. Sie wurden mit dem Röntgenobservatorium Chandra im Orbit aufgenommen. Die Trümmerwolke ist als Supernovaüberrest SN 1006 bekannt. Sie ist etwa 60 Lichtjahre groß und besteht aus den Überresten eines Weißen Zwergsterns.

Der kompakte weiße Zwerg war Teil eines Doppelsternsystems. Er sammelte nach und nach Materie seines Begleitsterns an. Der Materiezuwachs löste schließlich eine thermonukleare Explosion aus, die den Zwergstern zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit fand diese Explosion tatsächlich 7000 Jahre vor der Ankunft des Lichts 1006 bei der Erde statt. Stoßwellen im Überrest beschleunigen Teilchen auf extreme Energien. Sie gelten als Quelle der rätselhaften kosmischen Strahlen.

Zur Originalseite