Tyrrhenisches Meer und Sonnwendhimmel

Hinter einer grünen Landschaft und dem Meer, das bis zum Horizont reicht, steigt in einem Bogen die Sonne auf, an drei Stellen ist sie heller mit Strahlenkranz abgebildet und geht am Bildrand im Abendrot unter. Mitten unter dem Sonnenbogen steht ein blattloser Baum.

Credit und Bildrechte: Danilo Pivato

Beschreibung: Heute um 23.38 Weltzeit ist Sonnenwende erreicht die Sonne die südlichste Deklination am Himmel des Planeten Erde. Die Sonnenwende im Dezember markiert auf der Nordhalbkugel den Beginn des Winters und im Süden den Sommeranfang. In nördlichen Breiten zieht die Sonne am Himmel ihren tiefsten Bogen über dem südlichen Horizont. Das ist im waagrecht komprimierten Bild oben zu sehen.

Am Sonnwendtag vergeht im Norden die kürzeste Zeitspanne zwischen Sonnenaufgang und -untergang, der hat die wenigsten Tageslichtstunden. Dieses Kompositbild folgt dem Sonnenpfad am Sonnwendtag im Dezember 2005 am blauen Himmel mit Blick vom italienischen Badeort Santa Severa Richtung Fiumicino hinunter zur Küste des Tyrrhenischen Meeres. Der Blickwinkel der 43 gut geplanten Einzelaufnahmen von Sonnenaufgang bis Sonnenuntergang umfasst etwa 115 Grad.

Zur Originalseite

Riesige Sonnenprotuberanz bricht aus

Credit: GSFC der NASA, SDO AIA Team, ESA JHelioviewer-Team

Beschreibung: Klickt auf den Pfeil und beobachtet, wie ein ungewöhnlich langes Filament aus der Sonne explodiert. Das Filament wurde diesen Monat schon mehr als eine Woche vor seiner Explosion über der Sonnenoberfläche beobachtet.

Die Bildfolge stammt vom Solar Dynamics Observatory (SDO) im Erdorbit. Sie wurde in einer Farbe des ultravioletten Lichts aufgenommen, die von Helium ausgestrahlt wird. Die Explosion erzeugte einen koronalen Massenauswurf, der sehr energiereiches Plasma ins Sonnensystem auswarf. Diese Plasmawolke verfehlte die Erde jedoch und rief daher keine Polarlichter hervor.

Der oben gezeigte Ausbruch und eine ungewöhnlich ausgedehnte Eruption im August zeigen, wie sich Gebiete, die auf der Sonnenoberfläche weit auseinander liegen, manchmal synchron verhalten können. Explosionen wie diese treten im Lauf der nächsten Jahre häufiger auf, weil sich unsere Sonne einem Aktivitätsmaximum nähert.

Zur Originalseite

Spikulen: Strahlen auf der Sonne

Das Bild zeigt einen kleinen Ausschnitt der Sonnenoberfläche mit glühenden orangeroten Granulen und fadenartigen Strukturen.

Credit: K. Reardon (Osservatorio Astrofisico di Arcetri, INAF) IBIS, DST, NSO

Beschreibung: Stellt euch eine Röhre vor, die so breit wie ein Staat und so lang wie die Erde ist. Nun stellt euch vor, dass in in dieser Röhre heißes Gas mit einer Geschwindigkeit von 50.000 Kilometern pro Stunde fließt. Versuchent euch vorzustellen, dass diese Röhre nicht aus Metall, sondern einem transparenten Magnetfeld besteht. Damit habt ihr nur eine von Tausenden junger Spikulen auf der aktiven Sonne vor Augen.

Oben ist eines der am höchsten aufgelösten Bilder zu sehen, die bislang von diesen rätselhaften solaren Flusskanälen gemacht wurden. Spikulen füllen das oben gezeigte Bildfeld der aktiven Sonnenregion 11092, die letzten Monat über die Sonne zog, sie laufen jedoch besonders offensichtlich beim Sonnenfleck links unten zusammen.

Eine Bilderserie zeigte unlängst, dass Spikulen etwa fünf Minuten lang bestehen bleiben, wobei sie als kleine Röhren aus rasch aufsteigendem Gas beginnen und später schwinden, wenn das Gas den höchsten Punkt erreicht hat und auf die Sonne zurückfällt. Was die Entstehung und das Kräftespiel der Spikulen bestimmt, wird weiterhin untersucht.

Zur Originalseite

Es kam von der Sonne

Links unten ist die Sonne als orangefarbener Ball mit roten Strukturen dargestellt, rechts oben ist eine riesige dunkelrote Protuberanz.

Credit: SOHO-EIT-Konsortium, ESA, NASA

Beschreibung: Was taucht da am Sonnenrand auf? Auf den ersten Blick sieht es wie ein Sonnenmonster aus, doch es ist eine Sonnenprotuberanz. Die oben gezeigte Protuberanz wurde dieses Jahr vom Satelliten SOHO in einer Sonnenumlaufbahn in einer frühen Phase der Eruption aufgenommen. Sie entwickelte sich rasch zu einer der größten, die je dokumentiert wurden.

Sogar auf dieser Abbildung ist die Protuberanz riesig – die Erde würde leicht hineinpassen. Eine Sonnenprotuberanz ist eine dünne Wolke aus Sonnengas, das vom Magnetfeld der Sonne über der Oberfläche gehalten wird. Eine ruhige Protuberanz besteht üblicherweise etwa einen Monat lang, während sich eine ausbrechende Protuberanz – wie jene, die sich oben entwickelt – innerhalb von Stunden in einem koronalen Massenauswurf (KMA) entladen kann und dabei heißes Gas ins Sonnensystem ausstößt.

Protuberanzen sind zwar sehr heiß, wirken aber üblicherweise dunkel, wenn man sie vor der Sonne betrachtet, weil sie etwas kühler sind als die Sonnenoberfläche. Da sich unsere Sonne im Lauf der nächsten drei Jahre einem solares Maximum nähert, sind weitere große ausbrechende Protuberanzen zu erwarten.

Zur Originalseite

Äquinoktium und Eisensonne

Die Sonne sieht auf diesem Bild ungewohnt dunkel aus, nur am Rand ist sie hell, und aus einigen Löchern strömen helle, büschelartige Lichter, unten sind zwei durch Schleifen miteinander verbunden.

Credit und Bildrechte: NASA / Goddard / SDO AIA Team

Beschreibung: Heute um 03:09 Weltzeit kreuzte die Sonne den Himmelsäquator in Richtung Süden. Dieses astronomische Ereignis ist als Äquinoktium bekannt, es markiert auf der Nordhalbkugel den ersten Tag im Herbst und den Beginn des Frühlings im Süden.

Äquinoktium bedeutet gleiche Nacht. Wenn die Sonne am Himmelsäquator steht, erleben Erdbewohner fast 12 Stunden Tageslicht und 12 Stunden Dunkelheit. Im Norden werden die Tage nun kürzer, und die Sonne sinkt am Himmel weiterhin tiefer, wenn der Winter kommt.

Betrachtet zur Feier der Tag- und Nachtgleiche diese Ansicht der Sonne im extremen Ultraviolettlicht. Es wurde vom Solar Dynamics Observatory aufgenommen, das die Sonne beobachtet. Dieses Falschfarbenbild von gestern zeigt die Emissionen stark ionisierter Eisenatome. Die Schleifen und Bögen zeigen leuchtendes Plasma, das von Magnetfeldern über aktiven Sonnenregionen gehalten wird.

Zur Originalseite

Loch in der Sonne

Im Bild ragt die Sonne auf, der untere Teil ist abgeschnitten. Die Oberfläche ist orange-braun gefleckt, in der Mitte ist ein riesiger dunkler Fleck mit einem Ausläufer nach links oben. Am Rand strahlt die Korona.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Diese bedrohliche, dunkle Form, die sich über die Oberfläche der Sonne ausbreitet, ist ein koronales Loch – eine Region mit niedriger Dichte über der Oberfläche, wo sich das Magnetfeld der Sonne frei in den interplanetaren Raum öffnet.

Koronale Löcher werden seit den 1960er Jahren vom Weltraum aus im Ultraviolett- und Gammastrahlenlicht umfassend untersucht. Sie sind als die Quelle des Hochgeschwindigkeits-Sonnenwindes bekannt – dieser besteht aus Atomen und Elektronen, die entlang der offenen Magnetfeldlinien ausströmen.

In Zeiten geringer Aktivität bedecken koronale Löcher üblicherweise Regionen an den Sonnenpolen. Doch dieses ausgedehnte koronale Loch bestimmte Anfang dieser Woche die nördliche Sonnenhalbkugel, wie die Kameras des Solar Dynamics Observatory im extremen Ultraviolettlicht zeigen. Der Sonnenwind, der von diesem koronalen Loch ausströmte, löste Polarlichter auf dem Planeten Erde aus.

Zur Originalseite

Die nicht so stille Sonne

Die obere Hälfte der Sonne ist in den Spektralbereichen von Ultraviolett abgebildet.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Nach einem langen Sonnenminimum ist die Sonne nun nicht mehr so ruhig. Dieser Sonnenschnappschuss im extremen Ultraviolett des Solar Dynamics Observatory vom 1. August zeigt einen komplexen Aktivitäts-Ausbruch auf der nördlichen Halbkugel.

Das Falschfarbenbild zeigt das heiße Sonnenplasma bei Temperaturen zwischen 1 und 2 Millionen Kelvin. Zusammen mit den ausbrechenden Filamenten und Protuberanzen brach links in der aktiven Region eine kleine(!) Sonnenfackel aus, die von einem koronalen Massenauswurf (KMA) begleitet wurde. Ein KMA ist eine Wolke aus Milliarden Tonnen energiereicher Teilchen, die zum Planeten Erde unterwegs sind.

Der koronale Massenauswurf überwand die 150 Millionen Kilometer in nur zwei Tagen und prallte auf die Magnetosphäre der Erde. Das verursachte einen Sturm im Erdmagnetfeld sowie Nord– und Südlichter.

Zur Originalseite

Finsternis-Schattenkegel über Patagonien

Über der dunklen Erde leuchtet am Horizont die Korona um den Mond, links und rechts ist der Horizont hell, in der Mitte ist der Schatten der Erde am blauen Himmel erkennbar.

Credit und Bildrechte: Daniel Fischer (Cosmic Mirror)

Beschreibung: Manchmal ist bei einer totalen Sonnenfinsternis ein seltsamer düsterer Schatten zu sehen, der bis in die Ferne reicht. Dieser Schatten wird als Schattenkegel bezeichnet und ist dann sichtbar, weil die Erdatmosphäre nicht ganz transparent ist, sondern das Sonnenlicht streut und daher tagsüber blau erscheint. Schattenkegel sind besonders dramatisch, wenn eine Finsternis nahe am Horizont steht, weil durch die Geometrie ein langer Korridor aus abgeschatteter Luft entsteht.

Oben seht ihr einen Schattenkegel, der letzten Monat bei Sonnenuntergang bei einer totalen Sonnenfinsternis im argentinischen Patagonien fotografiert wurde. Die verfinsterte Sonne leuchtet wegen des Lichtes der Korona, die sie umgibt, immer noch hell um den Mondrand herum. Wenige Minuten später begann der Mond, sich von der Sonne zu entfernen, während beide hinter den in fernen Anden untergingen.

Zur Originalseite