Illustris-Simulation des Universums

Videocredit: Illustris-Arbeitsgemeinschaft, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: The Poisoned Princess (Media Right Productions)

Wie sind wir hierher gekommen? Klickt auf den Pfeil, lehnt euch zurück und seht zu. Diese neue Computersimulation zeigt die Entstehung des Universums. Es ist die größte und anspruchsvollste Simulation, die je erstellt wurde. Sie liefert neue Erkenntnisse zur Bildung von Galaxien und bietet neue Perspektiven zum Platz der Menschheit im Universum.

Das Illustris-Projekt ist das bisher größte seiner Art. Es verbrauchte 20 Millionen CPU-Stunden. Dabei verfolgte es 12 Milliarden Auflösungselemente in einem Würfel mit einer Kantenlänge von 35 Millionen Lichtjahren. Die berechnete Entwicklungszeit umfasst 13 Milliarden Jahre. Die Simulation veranschaulicht erstmals, wie aus Materie eine große Vielfalt an Galaxientypen entsteht.

Während sich das virtuelle Universum entwickelt, kondensiert bald durch Gravitation ein Teil der Materie, die mit dem Universum expandiert. Das Material bildet Filamente, Galaxien und Galaxienhaufen.

Das Video zeigt die Perspektive einer virtuellen Kamera, die einen Teil des Universums umkreist, während sich dieses verändert. Zuerst zeigt sie die Entwicklung Dunkler Materie. Dann folgt Wasserstoff, der nach Temperatur codiert ist (0:45). Später sind schwere Elemente wie Helium und Kohlenstoff zu sehen (1:30). Schließlich kehrt die Kamera zu Dunkler Materie zurück (2:07).

Links unten ist die Zeit gelistet, die seit dem Urknall vergangen ist. Rechts unten ist die Art der gezeigten Materie zu lesen. Explosionen (0:50) zeigen Galaxienzentren mit sehr massereichen Schwarzen Löchern. Sie werfen Blasen aus heißem Gas aus. Es gibt interessante Unstimmigkeiten zwischen Illustris und dem realen Universum. Nun wird untersucht, warum die Simulation zum Beispiel ein Übermaß an alten Sternen erzeugt.

Zur Originalseite

Ein Schwarzes Loch in der Photonensphäre umkreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Was würden wir sehen, wenn wir zu einem Schwarzen Loch kommen? Ein besonders interessanter Ort in der Nähe eines Schwarzen Loches ist seine Photonensphäre. Dort können Photonen es umkreisen. Dieser Bereich ist 50 Prozent weiter vom Innersten entfernt als der Ereignishorizont.

Wenn ihr von der Photonensphäre eines Schwarzen Loches nach außen blickt, wäre der halbe Himmel ganz schwarz. Die andere Hälfte wäre ungewöhnlich hell. Was sich hinter eurem Kopf befindet, wäre in der Mitte zu sehen.

Dieses computeranimierte Video zeigt diese Aussicht von der Photonensphäre aus. Die untere Region erscheint schwarz, weil alle Lichtstrahlen in dieser dunklen Region vom Schwarzen Loch ausgehen müssten. Das Schwarze Loch strahlt aber natürlich kein Licht ab. Die obere Hälfte des Himmels leuchtet dagegen ungewöhnlich hell und blau verschoben.

Zur Hell-dunkel-Teilung in der Mitte hin tauchen immer mehr vollständige Himmelsbilder auf. Diese Hell-Dunkel-Teilung ist die Photonensphäre. Dort befinden wir uns. Da hier Photonen kreisen können, kreist auch Licht von hinter dem Kopf um das Schwarze Loch und gelangt so ans Auge. Kein Ort am Himmel ist hier verborgen. Sterne, die hinter dem Schwarzen Loch vorbeiwandern, schwirren scheinbar schnell um einen Einsteinring herum. Der Einsteinring erscheint oben als waagrechte Linie. Er ist etwa ein Viertel der Bildhöhe vom oberen Rand des Videos entfernt.

Dieser Film ist Teil einer Videoserie, die den Raum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

(Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.)

Zur Originalseite

Um ein Schwarzes Loch kreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Wie sieht es aus, wenn man um ein Schwarzes Loch kreist? Die starke Gravitation des Schwarzen Loches lenkt die Bahnen von Licht stark ab. Daher wäre die Umgebung sehr merkwürdig.

Erstens könnte man den ganzen Himmel sehen, weil sogar das Licht der Sterne hinter dem Schwarzen Loch zum Betrachter gelenkt würde. Außerdem wäre der Himmel in der Nähe des Schwarzen Lochs stark verzerrt. Dabei würden zum Schwarzen Loch hin immer mehr Bilder des gesamten Himmels sichtbar. Das visuell Auffälligste wäre aber, dass das äußerste Himmelsbild vollständig in einem leicht erkennbaren Kreis enthalten wäre, einem sogenannten Einsteinring.

Das oben gezeigte, wissenschaftlich korrekte Video wurde mit Computern erstellt. Es zeigt, was man sieht, wenn man ein Schwarzes Loch umkreist. Sterne, die fast genau hinter dem Schwarzen Loch vorbeiziehen, wandern sehr schnell um den Einsteinring herum. Sternbilder in der Nähe des Einsteinrings bewegen sich scheinbar schneller als Licht, doch kein Stern bewegt sich tatsächlich so schnell.

Dieses Video ist Teil einer Serie, die den Weltraum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.

Zur Originalseite

Galaxienkollisionen: Simulation versus Beobachtungen

Bildcredits: NASA, ESA; Visualisierung: Frank Summers (STScI); Simulation: Chris Mihos (CWRU) und Lars Hernquist (Harvard).

Was passiert, wenn zwei Galaxien kollidieren? Es dauert länger als eine Milliarde Jahre. Trotzdem sind solche Titanenkämpfe ziemlich häufig.

Galaxien bestehen hauptsächlich aus leerem Raum. Daher kollidieren meist nicht ihre Sterne. Stattdessen verzerrt oder zerstört die Schwerkraft einer Galaxie die andere Galaxie. Am Ende können die Galaxien verschmelzen und eine größere Galaxie bilden. Doch die ausgedehnten Gas- und Staubwolken in Galaxien kollidieren. Dabei lösen sie Wellen an Sternbildung aus. Diese dauern sogar während der Kollision an.

Das Video zeigt eine Computersimulation, bei der zwei große Spiralgalaxien kollidieren. Die Animation wird von Standbildern mit echten Galaxien unterbrochen. Diese Standbilder wurden mit dem Weltraumteleskop Hubble aufgenommen. Unsere Milchstraße hat in der Vergangenheit schon mehrere kleinere Galaxien aufgenommen. In einigen Milliarden Jahren soll sie sogar mit der größeren Andromedagalaxie verschmelzen. Die Andromedagalaxie ist unsere galaktische Nachbarin.

Zur Originalseite

Simulation: eine Scheibengalaxie entsteht

Videocredit: Fabio Governato et al. (U. Washington), N-Body Shop, NASA Advanced Supercomputing

Wie entstehen Galaxien wie unsere Milchstraße? Da sich unser Universum für eine direkte Beobachtung der Galaxienentstehung zu langsam bewegt, wurden schnellere Computersimulationen entworfen, um das herauszufinden. Dieser Film zeigt (vorwiegend) Wasserstoff in Grün. Rechts unten läuft die Zeit in Milliarden Jahren seit dem Urknall. Dunkle Materie durchdringt alles und ist überall vorhanden, wird aber nicht gezeigt.

Zu Beginn der Simulation fällt Gas aus der Umgebung ein und sammelt sich in Regionen mit relativ hoher Gravitation. Bald entstehen zahlreiche Protogalaxien. Sie rotieren und beginnen zu verschmelzen. Nach etwa vier Milliarden Jahren entsteht ein klar definiertes Zentrum. Es bestimmt eine Region mit einem Durchmesser von etwa 100.000 Lichtjahren und sieht nach und nach wie eine heutige Scheibengalaxie aus.

Doch nach ein paar weiteren Milliarden Jahren kollidiert diese frühe Galaxie mit einer anderen. Gasströme von anderen Galaxienverschmelzungen regnen auf diesen seltsamen, faszinierenden kosmischen Tanz herab. Als die Simulation das halbe Alter des heutigen Universums erreicht, entsteht eine einzelne, größere Scheibe. Selbst dann fallen noch Gasklumpen hinein. Manche davon sind kleine Begleitgalaxien. Sie fallen hinein und werden in der gegenwärtigen Epoche von der rotierenden Galaxie absorbiert. Damit endet der Film.

Für unsere Milchstraße sind die großen Verschmelzungen vielleicht noch nicht vorbei. Es gibt aktuelle Hinweise, dass unsere riesige Spiralgalaxienscheibe in wenigen Milliarden Jahren mit der etwas kleineren Andromeda-Spiralgalaxie kollidiert und verschmilzt.

Zur Originalseite

Das Ende der Galaxis: Kollision mit Andromeda steht bevor

Hinter der Silhouette eines Berges ragen die Milchstraße und die Andromedagalaxie auf. Durch die starken Gezeiten sind beide Galaxien bereits stark verzerrt.

Illustrationscredit: NASA, ESA, Z. Levay und R. van der Marel (STScI) und A. Mellinger

Kollidiert unsere Milchstraße eines Tages mit ihrer größeren Nachbarin, der Andromedagalaxie? Sehr wahrscheinlich. Auf neuen Bildern des Weltraumteleskops Hubble werden leichte Verschiebungen von M31 vor den Galaxien im Hintergrund genau vermessen. Das Ergebnis lässt vermuten, dass das Zentrum von M31 mit dem Zentrum der Galaxis kollidiert.

Die möglichen Messfehler bei der Seitwärtsgeschwindigkeit reichen aus, dass sich die Zentren der Galaxien vielleicht verfehlen – aber nur knapp. Die Galaxien kommen einander so nahe, dass sich ihre Halos gravitativ verschränken. Wenn das geschieht, sind die beiden Galaxien aneinander gebunden. Sie tanzen umeinander und verschmelzen vielleicht in einigen Milliarden Jahren zu einer großen elliptischen Galaxie.

Diese künstlerische Illustration zeigt den Himmel einer Welt in ferner Zukunft, wenn die Galaxienzentren anfangen, einander zu zerstören. Die genaue Zukunft unserer Milchstraße und der Galaxien in der Lokalen Gruppe wird wohl in den nächsten Jahren genau erforscht.

Partielle Mondfinsternis heute Nacht: Galerie der letzten Mondfinsternisse
Zur Originalseite

Muschelgalaxie NGC 7600

Mitten im Bild ist eine Galaxie zwischen dünn gesäten, bunten Sternen. Ihr leicht verschwommener Kern ist von einem diffusen Halo umgeben.

Bildcredit und Bildrechte: Ken Crawford (Rancho Del Sol Observatory); Arbeitsgemeinschaft: Andrew Cooper (MPA), Carlos Frenk, John Helly, Shaun Cole (Institut für computergestützte Kosmologie), David Martinez-Delgado (MPIA), Star Stream Pilot Survey Group

Die elliptische Galaxie NGC 7600 ist ähnlich groß wie die Milchstraße. Sie ist ungefähr 160 Millionen Lichtjahre von uns entfernt. Dieses detailreiche Bild zeigt den Himmel in Richtung des Sternbildes Wassermann. Es ist etwa 1/2 Grad breit und zeigt NGC 7600 mit einem interessanten äußeren Halo aus ineinander verschachtelten Hüllen und ausgedehnten Strukturen, welche die ganze Galaxie umfassen.

Die eindrucksvollen Eigenschaften werden mit einem Zuwachs an Dunkler Materie und Sternen auf einer kosmischen Zeitskala erklärt. Ein Film zeigt die Erscheinung von NGC 7600 erstaunlich detailreich. Er entstand durch die Simulation einer Galaxienbildung anhand eines kosmologischen Modells, bei dem kalte Dunkle Materie für die Halos verschmelzender Galaxien angenommen wurde.

Der Simulationsfilm ist auf Vimeo und in weiteren Formaten verfügbar. Er zeigt Hinweise, dass Merkmale von Galaxienverschmelzungen, die schon mit kleinen Teleskopen auf der Erde zu sehen sind, eine natürliche Folge der Galaxienbildung sowie grundlegende Eigenschaften von Dunkler Materie sind.

Zur Originalseite

Film mit Dunkler Materie aus der Bolshoi-Simulation

Video-Credit: A. Klypin (NMSU), J. Primack (UCSC) et al., Chris Henze (NASA Ames), Pleiaden-Supercomputer der NASA; Musik (© 2002): Her Knees Deep in Your Mind von Ray Lynch

Stellt euch vor, ihr könnt durch das Universum fliegen und Dunkle Materie sehen! An der Technologie für so einen Flug wird noch gearbeitet. Doch der Technik gelang mit Abschluss der Bolshoi-Kosmologie-Simulation ein großer Schritt bei der Visualisierung so eines Flugs. Nach 6 Millionen CPU-Stunden warf der siebtschnellste Supercomputer der Welt viele wissenschaftliche Neuheiten aus. Eine davon war diese Flugsimulation.

Am Beginn stand eine relativ gleichmäßige Verteilung der Dunklen Materie im frühen Universum. Diese sieht man am Mikrowellenhintergrund und anderen großen Datensätzen des Himmels. Die Bolshoi-Simulation folgte mit dem kosmologischen Standardmodell der Entwicklung des Universums bis zur Jetztzeit. Die Simulation seht ihr oben.

Die hellen Punkte im Video sind Knoten aus eigentlich unsichtbarer Dunkler Materie. Viele Knoten enthalten normale Galaxien. Markant sind lange Fasern und Galaxienhaufen. Sie werden von der Gravitation der Dunklen Materie bestimmt. Statistische Vergleiche zwischen Bolshoi und Himmelskarten von Galaxien zeigen eine hohe Übereinstimmung.

Die Bolshoi-Simulation stützt zwar das Vorhandensein Dunkler Materie. Doch viele Fragen zum Universum bleiben offen: Wie ist Dunkle Materie zusammengesetzt? Was ist die Natur der Dunklen Energie? Wie entstanden die ersten Sterngenerationen und Galaxien?

Astrophysik: Sucht in der Astrophysics Source Code Library
Zur Originalseite