Simulation: Eine Scheibengalaxie entsteht

Videocredit: TNG-Arbeitsgemeinschaft, MPCDF, FAS Harvard U.; Musik: World’s Sunrise (YouTube: Jimena Contreras)

Wie sind wir hierher gekommen? Wir wissen, dass wir auf einem Planeten leben, der um einen Stern kreist, der wiederum die Galaxis umrundet, doch wie ist das alles entstanden? Unser Universum bewegt sich zu langsam, um das zu beobachten. Daher wurden schnelle Computersimulationen erstellt, um das herauszufinden. Dieses Video der Arbeitsgemeinschaft IllustrisTNG simuliert die Bewegung von Gas ab dem frühen Universum (Rotverschiebung 12) bis heute (Rotverschiebung 0).

Zu Beginn der Simulation fällt Gas aus der Umgebung in eine Region mit relativ hoher Gravitation und sammelt sich dort an. Nach wenigen Milliarden Jahren bildet sich bei dem faszinierenden kosmischen Tanz ein klar definiertes Zentrum. Gasklumpen fallen weiterhin in die rotierende Galaxie. Manche davon sind kleine Begleitgalaxien. Sie werden aufgenommen, bis am Ende des Videos die gegenwärtige Epoche erreicht ist.

Doch für die Milchstraße sind die großen Verschmelzungen vielleicht noch nicht vorbei. Es gibt aktuelle Hinweise, dass unsere große Spiralgalaxie in einigen Milliarden Jahren mit der etwas größeren Andromeda-Spiralgalaxie kollidiert und verschmilzt.

Offene Wissenschaft: Stöbert in mehr als 3000 Codes der Quellcodebibliothek für Astrophysik

Zur Originalseite

Simulation TNG50: Ein Galaxienhaufen entsteht

Videocredit: IllustrisTNG-Projekt; Visualisierung: Dylan Nelson (Max-Planck-Institut für Astrophysik) et al.; Musik: Symphonie Nr. 5 (Ludwig van Beethoven) in der YouTube-Audio-Bibliothek

Wie entstehen Galaxienhaufen? Unser Universum bewegt sich zu langsam, um es dabei zu beobachten. Daher werden schnellere Computersimulationen erstellt, um das herauszufinden. Ein aktueller Versuch ist TNG50 von IllustrisTNG, eine Verbesserung der berühmten Illustris-Simulation.

Der erste Teil dieses Videos zeigt, wie sich kosmisches Gas (großteils Wasserstoff) im frühen Universum bis heute zu Galaxien und Galaxienhaufen entwickelt. Hellere Farben markieren schneller bewegtes Gas. Während sich das Universum entwickelt, fällt Gas in Gravitationssenken, Galaxien entstehen, Galaxien rotieren, Galaxien kollidieren und verschmelzen, während in den Zentren der Galaxien Schwarze Löcher entstehen und das umgebende Gas mit hoher Geschwindigkeit ausstoßen.

Die zweite Hälfte des Videos werden Sternen erfasst, wir sehen einen Galaxienhaufen mit Gezeitenschweifen und Sternströmen. Der Ausfluss von Schwarzen Löchern in TNG50 ist überraschend komplex, die Details werden mit unserem realen Universum verglichen. Die Erforschung der Gasflüsse im frühen Universum hilft der Menschheit, zu verstehen, wie unsere Erde, die Sonne und das Sonnensystem entstanden sind.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Simulation der Verteilung Dunkler Materie im Universum.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Beschreibung: Spukt es in unserem Universum? Auf dieser Karte der Dunklen Materie sieht es so aus. Die Schwerkraft der unsichtbaren Dunklen Materie ist die wichtigste Erklärung dafür, warum Galaxien sich so schnell drehen, warum Galaxien so schnell um Galaxienhaufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie sowohl im lokalen Universum als auch im fernen kosmischen Mikrowellenhintergrund so verteilt ist, wie sie ist.

Dieses Bild aus der Weltraumschau „Dunkles Universum“ des Hayden-Planetariums im Amerikanischen Museum für Naturkunde zeigt ein mögliches Beispiel dafür, wie allgegenwärtig Dunkle Materie in unserem Universum ist. Es stammt aus einer detailreichen Computersimulation, schwarz dargestellte komplexe Fasern aus Dunkler Materie im Universum sind wie Spinnweben verteilt. Die relativ seltenen Klumpen vertrauter baryonischer Materie sind orange gefärbt. Diese Simulation stimmt statistisch sehr gut mit den astronomischen Beobachtungen überein.

Noch gruseliger ist vielleicht, dass Dunkle Materie – obwohl sie an sich schon ziemlich seltsam ist und eine unbekannte Form hat – nicht mehr als die eigenartigste Gravitationsquelle im Universum gilt. Diese Ehre gebührt nun der Dunklen Energie, einer gleichförmigeren Quelle abstoßender Gravitation, die anscheinend die Expansion des gesamten Universums bestimmt.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie
Zur Originalseite

GW200115: Simulation der Verschmelzung eines Schwarzen Lochs mit einem Neutronenstern


Videocredit: Simulation: S.V. Chaurasia (Stockholm U.), T. Dietrich (Potsdam U. & MPIGP); Visualisierung: T. Dietrich (Potsdam U. und MPIGP), N. Fischer, S. Ossokine, H. Pfeiffer (MPIGP)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Neutronenstern vernichtet? Analysen lassen den Schluss zu, dass so ein Geschehen das Gravitationswellenereignis GW200115 verursachte, das im Januar 2020 von den Observatorien LIGO und Virgo beobachtet wurde.

Um das ungewöhnliche Ereignis besser zu verstehen, wurde diese Visualisierung aus einer Computersimulation erstellt. Zu Beginn des Visualisierungsvideos kreisen das Schwarze Loch (etwa 6 Sonnenmassen) und der Neutronenstern (etwa 1,5 Sonnenmassen) umeinander und senden dabei eine immer größer werdende Menge an Gravitationsstrahlung aus. Das malerische Muster der Gravitationswellen-Emission ist in Blau dargestellt.

Das Duo nähert sich einander immer schneller auf spiralförmigen Bahnen, bis der Neutronenstern vollständig vom Schwarzen Loch verschlungen wird. Da der Neutronenstern während der Kollision nicht auseinanderbricht, entkommt nur wenig Licht – das passt zum Fehlen eines beobachteten optischen Gegenstücks. Das übrig gebliebene Schwarze Loch schwingt kurz. Sobald das Schwingen abklingt, verebben auch die ausgesendeten Gravitationswellen.

Das 30-sekündige Zeitraffervideo ist scheinbar kurz, doch in Wirklichkeit dauert es etwa 1000-mal so lang wie das echte Verschmelzungsereignis.

Astrophysik: mehr als 2500 Codes in der Astrophysik-Quellcodebibliothek
Zur Originalseite

Der gemalte Saturnmond Iapetus in 3D


Bildcredit: NASA, ESA, JPL, SSI, Cassini Imaging Team; 3D-Berechnung: VTAD der NASA

Beschreibung: Was ist mit dem Saturnmond Iapetus passiert? Weite Bereiche dieser seltsamen Welt sind dunkelbraun, andere hingegen strahlend weiß. Die Zusammensetzung des dunklen Materials ist unbekannt, doch Infrarotspektren lassen vermuten, dass es möglicherweise eine dunkle Form von Kohlenstoff enthält. Iapetus hat auch einen ungewöhnlichen Äquatorwall, der ihn wie eine Walnuss aussehen lässt.

Um diesen scheinbar bemalten Mond besser zu verstehen, führte die NASA im Jahr 2007 die Roboter-Raumsonde Cassini, die damals Saturn umkreiste, bis auf weniger als 2000 Kilometer an ihn heran.

Iapetus ist hier dreidimensional abgebildet. Ein riesiger Einschlagkrater im Süden umfasst gewaltige 450 Kilometer und und überlagert offenbar einen älteren Krater von ähnlicher Größe. Das dunkle Material bedeckt zunehmend den östlichsten Teil von Iapetus und verdunkelt Krater und Hochländer gleichermaßen.

Bei näherer Betrachtung zeigt sich, dass die dunkle Beschichtung in der Regel zum Äquator des Mondes zeigt und weniger als einen Meter dick ist. Eine führende Hypothese besagt, dass der dunkle Auftrag großteils aus Schmutz besteht, der übrig bleibt, wenn das relativ warme, schmutzige Eis sublimiert. Eine erste Schicht aus dunklem Material könnte durch die Ablagerung von Trümmern anderer Monde stammen, die bei Meteoriteneinschlägen freigesetzt wurden.

Zur Originalseite

Simulation: Entstehung der ersten Sterne


Videocredit: Harley Katz (U. Oxford) et al.

Beschreibung: Wie entstanden die ersten Sterne? Um das herauszufinden, wurde die Computersimulation SPHINX für Sternbildung im sehr frühen Universum erstellt. Einige der Ergebnisse sind in diesem Video dargestellt. Die Zeit seit dem Urknall wird links oben in Millionen Jahre angezeigt.

Sogar 100 Millionen Jahre nach dem Urknall war die Materie im Kosmos zu gleichmäßig verteilt, als dass Sterne hätten entstehen können. Außer der Hintergrundstrahlung ist das Universum dunkel.

Bald beginnen leichte Materieklumpen mit viel Wasserstoff zu ersten Sternen zu verschmelzen. In diesem Zeitraffervideo steht violett für Gas, weiß für Licht und Gold für Strahlung, die so energiereich ist, dass sie Wasserstoff ionisiert und in geladene Elektronen und Protonen zerlegt. Die goldfarbenen Regionen zeigen auch die massereichsten Sterne, die als mächtige Supernovae enden. Der eingeschobene Kreis betont eine Zentralregion, aus der eine Galaxie entsteht. Die Simulation läuft, bis das Universum etwa 550 Millionen Jahre alt ist.

Um die Genauigkeit der SPHINX-Simulationen und die zugrunde liegenden Annahmen zu beurteilen, werden die Ergebnisse nicht nur mit aktuellen detailreichen Beobachtungen verglichen, sondern auch mit künftigen direkteren Beobachtungen des frühen Universums verglichen, die mit dem noch in Bau befindlichen NASA-Weltraumteleskop James Webb geplant sind.

Zur Originalseite

STARFORGE: Eine Sternentstehungs-Simulation


Video- und Textcredit: Michael Y. Grudić (Nordwestliche U.) et al., STARFORGE-Arbeitsgruppe; Musik: Prélude n°4, opus 28 in E-Moll (Frédéric Chopin)

Beschreibung: Wie entstehen Sterne? Die meisten entstehen in riesigen Molekülwolken in der Zentralscheibe einer Galaxie. Der Prozess wird von Sternwinden, Strahlströmen, sehr energiereichem Sternenlicht und Supernovaexplosionen bereits existierender Sterne gestartet, beeinflusst und begrenzt.

Dieses Video zeigt die komplexen Wechselwirkungen anhand der berechneten STARFORGE-Simulation einer Gaswolke mit 20.000 Sonnenmassen. In der Zeitraffer-Visualisierung zeigen hellere Regionen dichteres Gas an, Farben codieren die Geschwindigkeit des Gases (violett ist langsam, orange ist schnell), und Punkte markieren die Positionen neu entstandener Sterne.

Zu Beginn des Videos beginnt eine etwa 50 Lichtjahre große Gaswolke, sich durch ihre eigene Gravitation zu verdichten. Innerhalb von 2 Millionen Jahren entstehen erste Sterne, während neu entstandene massereiche Sterne eindrucksvolle Strahlströme ausstoßen. Nach 4,3 Millionen Jahren friert die Simulation ein, und der Raum wird gedreht, um einen dreidimensionalen Blickwinkel zu erhalten.

Vieles rund um Sternbildung ist noch nicht bekannt, darunter der Effekt der Strahlströme bei der Begrenzung der Masse später entstehender Sterne.

Portal ins Universum: Random APOD Generator
Zur Originalseite

Die doppelt verzerrte Welt der binären Schwarzen Löcher


Credit für die Wissenschaftliche Visualisierung: NASA, Goddard Space Flight Center, Jeremy Schnittman und Brian P. Powell – Text: Francis Reddy

Beschreibung: In dieser faszinierenden Computervisualisierung bahnen sich Lichtstrahlen von Akkretionsscheiben um ein Paar einander umkreisender supermassereicher Schwarzer Löcher ihren Weg durch die gekrümmte Raumzeit, die durch extreme Gravitation entsteht.

Die simulierten Akkretionsscheiben wurden mit zwei Falschfarbschemata versehen: Rot für die Scheibe um ein Schwarzes Loch mit 200 Millionen Sonnenmassen, und blau für die Scheibe um ein Schwarzes Loch mit 100 Millionen Sonnenmassen. Das macht es einfacher, die Lichtquellen zu verfolgen, doch die Wahl spiegelt auch die Wirklichkeit wieder: Heißeres Gas gibt Licht ab, das näher am blauen Ende des Spektrums liegt, und Materie, die um kleinere Schwarze Löcher kreist, erfährt stärkere Gravitationseffekte, die höhere Temperaturen erzeugen. Bei den vorhandenen Massen würden die beiden Akkretionsscheiben jedoch den Großteil ihres Lichtes in Ultraviolett abstrahlen.

Im Video sind verzerrte Sekundärbilder des blauen Schwarzen Lochs zu sehen, welche die Sicht des roten Schwarzen Lochs auf seinen Partner zeigen. Sie befinden sich im verworrenen Geflecht der roten Scheibe, die durch die Gravitation des blauen Schwarzen Lochs im Vordergrund verzerrt wird.

Weil wir die rote Sicht auf das Blau und gleichzeitig blau direkt sehen, erlauben uns die Bilder eine gleichzeitige Sicht auf beide Seiten von Blau. Rotes und blaues Licht, das von beiden Schwarzen Löchern stammt, ist im innersten Lichtring zu sehen, dem sogenannten Photonenring in der Nähe ihrer Ereignishorizonte.

Astronom*innen erwarten, dass sie in nicht allzu ferner Zukunft Gravitationswellen nachweisen können, das sind Wellen in der Raumzeit, die entstehen, wenn zwei supermassereiche Schwarze Löcher in einem System wie diesem hier einander auf spiralförmigen Bahnen nähern und verschmelzen.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Auf dieser Simulation des Hayden Planetariums scheint Dunkle Materie im Universum häufiger vorzukommen als baryonische Materie.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Beschreibung: Spukt es in unserem Universum? Auf dieser Karte Dunkler Materie scheint es so. Die Gravitation unsichtbarer Dunkler Materie ist die führende Erklärung dafür, warum Galaxien so schnell rotieren, warum Galaxien auf ihren Bahnen in Galaxienhaufen so schnell sind, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie wir das beobachten – sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Dieses Bild aus der schon älteren Weltraumschau „Dunkles Universum“ des Hayden Planetariums im Amerikanischen Museum für Naturgeschichte zeigt ein Beispiel, wie die alles durchdringende Dunkle Materie im Universum spuken könnte. Auf diesem Bild aus einer detailreichen Computersimulation sind schwarz abgebildete komplexe Fasern aus Dunkler Materie wie Spinnweben im Universum verteilt, während die relativ seltenen Klumpen aus vertrauter baryonischer Materie orange gefärbt sind. Diese Simulationen passen gut zu astronomischen Beobachtungen.

Eine vielleicht noch beängstigendere Wende der Ereignisse ist, dass Dunkle Materie – obwohl ziemlich seltsam und eine unbekannte Form – nicht mehr als seltsamste Quelle der Gravitation im Universum gilt. Diese Ehre gebührt der Dunklen Energie, einer gleichförmigeren Quelle abstoßender Gravitation, die nun anscheinend die Ausdehnung des gesamten Universums kontrolliert.

Zur Originalseite

Der Tanz von Venus und Erde


Video- und Textcredit: James O’Donoghue (JAXA); Daten: NASA, New Horizons; h/t: Josef Chlachula

Beschreibung: Jedes Mal, wenn die Venus an der Erde vorbeizieht, sehen wir sie von der gleichen Seite. Diese faszinierende Tatsache ist erst seit etwa 50 Jahren bekannt – seit damals können Radioteleskope hinter die dicken Wolken der Venus spähen und ihre langsam rotierende Oberfläche verfolgen.

So eine untere Konjunktion – wenn Venus der Erde am nächsten kommt – tritt heute auf. Diese Animation zeigt die Positionen von Sonne, Venus und Erde von 2010-2023, basierend auf Daten der NASA. An der Venusoberfläche wurde ein gelber Pseudo-Arm angebracht, der ihre Rotation anzeigt. Der Grund für diese ungewöhnliche 1,6-jährige Resonanz ist der gravitative Einfluss, den die Erde auf die Venus ausübt, und der überraschenderweise den Gezeiteneinfluss der Sone übertrifft.

Wenn man heute die Venus hinter dem grellen Licht der Sonne sehen könnte, wäre sie nur ein sehr schmaler Teil einer Sichel. Obwohl die Venus bisher am Abendhimmel sichtbar war, erscheint sie ab morgen am Morgenhimmel – von der Erde aus gesehen auf der anderen Seite der Sonne.

Expertendiskussion: Wie entdeckt die Menschheit erstmals außerirdisches Leben?
Zur Originalseite

Illustris-Simulation des Universums


Videocredit: Illustris-Arbeitsgruppe, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: The Poisoned Princess (Media Right Productions)

Beschreibung: Woher kommen wir? Klicken Sie hier, lehnen Sie sich zurück und sehen Sie zu. Diese Computersimulation der Entwicklung des Universums zeigt, wie Galaxien entstanden sind, und bietet Einblicke zum Platz der Menschheit im Universum.

Das Illustris-Projekt verbrauchte im Jahr 2014 20 Millionen CPU-Stunden, indem es die Entwicklung von 12 Milliarden Auflösungselementen in einem Zeitraum von 13 Milliarden Jahren und einem Würfel mit einer Seitenlänge von 35 Millionen Lichtjahren verfolgte. Die Simulation erfasst Materie bei der Entstehung einer Vielzahl von Galaxientypen. Während sich das virtuelle Universum entwickelt, kondensiert bald ein Teil der Materie, die mit dem Universum expandiert, durch Gravitation und bildet Fasern, Galaxien und Galaxienhaufen.

Dieses Video zeigt den Blickpunkt einer virtuellen Kamera, die um einen Teil des sich verändernden Universums kreist. Zuerst zeigt es die Entwicklung Dunkler Materie, dann Wasserstoff, der nach Temperatur gekennzeichnet ist (0:45), danach schwere Elemente wie Helium und Kohlenstoff (1:30) und schließlich wieder Dunkle Materie (2:07). Links unten läuft die Zeit ab dem Urknall, rechts unten ist die Art der Materie, die gerade gezeigt wird, gelistet. Explosionen (0:50) zeigen extrem massereiche Schwarze Löcher in Galaxienzentren, die Blasen aus heißem Gas ausstoßen.

Es wurden interessante Unstimmigkeiten zwischen Illustris und dem echten Universum untersucht, einschließlich der Frage, warum die Simulation eine Überfülle alter Sterne erzeugte.

Zur Originalseite