Wie der Komet TG seinen Staubschweif bildet

Die ESA-Raumsonde Rosetta fotografierte 2015, wie Strahlen aus Staub und Gas aus dem Kometen Tschurjumow-Gerassimenko (67P/TG) austraten.

Bildcredit und Lizenz: ESA, Rosetta, NAVCAM

Beschreibung: Woher kommen die Schweife von Kometen? Es gibt keine offensichtlichen Orte auf den Kernen von Kometen, von denen die Strahlen ausströmen, aus denen ein Kometenschweif entsteht.

Dieses ist eines der besten Bilder von solchen ausströmenden Strahlen. Fotografiert wurde es 2015 von der Roboter-Raumsonde Rosetta der ESA, die von 2014 bis 2016 den Kometen 67P/Tschurjumow-Gerassimenko (Komet TG) umrundete. Das Bild zeigt Schwaden aus Gas und Staub, die an zahlreichen Stellen auf dem Kern des Kometen TG austraten, als er sich der Sonne näherte und sich erwärmte.

Der Komet hat zwei markante Lappen, der größere misst ungefähr vier Kilometer, der kleinere Lappen ist etwa 2,5 Kilometer groß, beide sind über einen dünnen Hals verbunden. Untersuchungen lassen den Schluss zu, dass die Verdampfung weit unterhalb der Kometenoberfläche stattfinden muss, sodass die Strahlen aus Staub und Eis entstehen, deren Ausströmen durch die Oberfläche wir beobachten.

Komet TG (auch bekannt als Komet 67P) verliert bei jedem seiner 6,44 Jahre dauernden Umläufe um die Sonne etwa einen Meter seines Radius in Form von Ausströmungen. Bei dieser Menge wird der Komet in wenigen Tausend Jahren vollständig zerstört. Rosettas Mission endete 2016 einem kontrollierten Aufschlag auf der Oberfläche des Kometen TG.

Zur Originalseite

Komet NEOWISE von der ISS

Komet NEOWISE, Venus und Plejaden, fotografiert von der Internationalen Raumstation.

Bildcredit: NASA ISS

Beschreibung: Komet NEOWISE (C/2020 F3) hellte am Morgenhimmel des Planeten Erde vor der Dämmerung auf. Am 3. Juli umrundete er die Sonne und ist nun unterwegs ins äußere Sonnensystem.

Im niedrigen Erdorbit geht er ebenfalls vor der Sonne auf. Dieser Schnappschuss aus der Internationalen Raumstation vom 5. Juli zeigt ihn über dem näherrückenden Leuchten am östlichen Horizont. Auf der Erde leuchtet die Venus derzeit als Morgenstern, sie ist das gleißende Himmelslicht rechts im Bild. Über der Venus schimmern die Schwestersterne des kompakten Sternhaufens der Plejaden.

Himmelsbeobachter auf der Erde können den Kometen NEOWISE mit bloßem Auge erkennen, doch mit Fernglas ist der Anblick atemberaubend.

Komet NEOWISE auf der Erdoberfläche: Interessante Bilder, die bei APOD eingereicht wurden
Zur Originalseite

Saturns nördliches Sechseck

Das Sechseck an Saturns Nordpol wurde in den 1980er Jahren bei den Voyager-Vorbeiflügen an Saturn entdeckt. Diese einzigartige Struktur ist auch nach mehr als 30 Jahre.

Bildcredit: NASA, ESA, JPL, SSI, Cassini Imaging Team

Beschreibung: Warum bilden diese Wolken auf Saturn ein Sechseck? Niemand weiß das genau. Es wurde in den 1980er-Jahren bei den Voyager-Vorbeiflügen an Saturn entdeckt, und noch nie hat jemand etwas Vergleichbares irgendwo im Sonnensystem gesehen.

Ende 2012 fotografierte die Weitwinkelkamera der Raumsonde Cassini die ersten sonnenbeleuchteten Ansichten vom nördlichen Saturn, darunter auch dieses atemberaubende Falschfarbenbild vom Nordpol des Ringplaneten. Das Kompositbild wurde aus Daten im nahen Infrarot erstellt. Es zeigt niedrige Wolken in roten Farbtönen und hoch oben liegende Wolken in Grün, was Saturns Wolkenlandschaft sehr lebendig erscheinen lässt.

Dieses und ähnliche Bilder zeigen, wie stabil das Sechsecks mehr als 30 Jahre nach Voyager noch ist. Filme von Saturns Nordpol zeigen, wie die Wolkenstruktur auch während der Rotation ihre sechseckige Form beibehält.

Anders als einzelne Wolken auf der Erde, die wie Sechsecke aussehen, hat das Wolkenmuster auf Saturn augenscheinlich sechs klar definierte Seiten, die alle fast gleich lang sind. Vier Erden würden in dieses Sechseck passen. Hinter den Wolkenoberflächen leuchten rechts oben die Bögen der auffälligen Ringe in strahlendem Blau.

Zur Originalseite

Magnetische Stromlinien der Milchstraße

Der ESA-Satellit Planck entdeckte Magnetfeldstrukturen in unserer Galaxis, die zuvor unbekannt waren.

Bildcredit: ESA, Planck; Text: Joan Schmelz (USRA)

Beschreibung: Welche Rolle spielen Magnetfelder in der interstellaren Physik? Der ESA-Satellit Planck untersuchte die Emissionen kleiner, magnetisch ausgerichteter Staubkörnchen. Die Auswertung der Beobachtungen zeigt zuvor unbekannte Magnetfeldstrukturen in unserer Milchstraße, die auf diesem Ganzhimmelsbild als gekrümmte Linien dargestellt sind.

Die Ebene der Milchstraße ist dunkelrot – dort ist die Staubkonzentration am höchsten. Die riesigen Bögen über der Ebene sind wahrscheinlich Überreste vergangener Explosionen im Kern unserer Galaxis, die vom Konzept her den magnetischen schleifenartigen Strukturen in der Atmosphäre unserer Sonne ähnlich sind.

Die gekrümmten Stromlinien decken sich mit den interstellaren Fasern aus neutralem Wasserstoff und liefern den reizvollen Hinweis, dass Magnetfelder die Gravitation nicht nur beim Formen des interstellaren Mediums ergänzen können, sondern auch bei der Entstehung neuer Sterne. Auf welche Weise Magnetismus die Entwicklung unserer Galaxis beeinflusste, wird wohl in den nächsten Jahren weiterhin erforscht.

Zur Originalseite

Valles Marineris, der Grand Canyon des Mars

Das Valles Marineris auf dem Planeten Mars ist die größte Schlucht des Sonnensystems.

Bildcredit: NASA, USGS, Viking-Projekt

Beschreibung: Die größte Schlucht des Sonnensystems schneidet eine breite Schneise über die Vorderseite des Mars. Das große Tal wird Valles Marineris genannt, es ist mehr als 3000 Kilometer lang, ganze 600 Kilometer breit und 8 Kilometer tief. Zum Vergleich: Der Grand Canyon auf der Erde in Arizona (USA) ist 800 Kilometer lang, 30 Kilometer breit und 1,8 Kilometer tief.

Die Entstehung des Valles Marineris ist nicht bekannt, doch eine führende Hypothese besagt, dass es vor Milliarden Jahren als Riss begann, als der Planet abkühlte. In der Schlucht wurden mehrere geologische Prozesse nachgewiesen. Das Mosaik entstand aus mehr als 100 Marsbildern, die in den 1970er Jahren mit den Viking-Orbitern aufgenommen wurden.

Zur Originalseite

Vorbeiflug der Raumsonde BepiColombo an der Erde


Bildcredit und Lizenz: ESA, BepiColombo, MTM

Beschreibung: Wie sieht es aus, wenn man sich der Erde nähert? Ein solches Szenario wurde letzten Monat visuell detailreich von der Roboter-Raumsonde BepiColombo von ESA und JAXA aufgenommen, als sie auf ihrer Reise zum Planeten Merkur wieder an der Erde vorbeiflog.

Dieses fast 10-stündige Zeitraffervideo zeigt, wie die rotierende Erde hinter der Hochleistungsantenne der Raumsonde auftaucht und näher kommt. Die Erde ist so hell, dass man im Hintergrund keine Sterne sieht.

Die Robotersonde BepiColombo, die 2018 gestartet war, nützte die Gravitation der Erde, um ihren Kurs anzupassen. Es war der erste von neun planetaren Vorbeiflügen, die für die nächsten sieben Jahre geplant sind, aber der einzige Vorbeiflug an der Erde.

BepiColombo soll 2025 in den Merkurorbit eintreten und Bilder und Daten der Oberfläche und des Magnetfeldes aufnehmen, um die frühe Entwicklung des Sonnensystems und seines innersten Planeten besser zu verstehen.

Zur Originalseite

Cassini nähert sich Saturn


Videocredit und Bildrechte: Cassini Imaging Team, ISS, JPL, ESA, NASA, S. Van Vuuren et al.; Musik: Adagio für Streicher (NY Philharmonic)

Beschreibung: Wie sieht es aus, wenn man sich Saturn in einem Raumschiff nähert? Das muss man sich nicht bloß vorstellen – die Raumsonde Cassini tat das 2004. Sie fotografierte auf dem Weg Tausende Bilder und Hunderttausende weitere nach dem Eintritt in den Orbit. Manche von Cassinis frühen Bildern wurden digital justiert und beschnitten und zu diesem faszinierenden Video verarbeitet, das Teil eines größeren IMAX-Filmprojektes mit der Bezeichnung „In Saturns Ringen“ ist, und an dem noch gearbeitet wird.

Im letzten Abschnitt der Annäherung ragt Saturn zunehmend größer auf, während unten der wolkige Titan vorbeizischt. Während Saturn im Hintergrund rotiert, sieht man, wie Cassini als Nächstes über Mimas fliegt, dessen riesiger Krater Herschel deutlich sichtbar ist. Saturns majestätische Ringe übernehmen dann die Schau, als Cassini Saturns dünne Ringebene durchquert. Die Ringe werfen dunkle Schatten auf Saturn. Schließlich taucht in der Ferne der rätselhafte Mond Enceladus mit seinen Eis-Geysiren auf und nähert sich am Ende des Videoclips.

Nach mehr als einem Jahrzehnt der Forschung und Entdeckung ging der Treibstoff der Raumsonde Cassini im Jahr 2017 zur Neige, und sie wurde in die Saturnatmosphäre gelenkt, wo sie mit Sicherheit geschmolzen ist.

Zur Originalseite

Ansichten des Mondes von Apollo 13


Videocredit: NASA, LRO; Datenvisualisierung: Ernie Wright (USRA); Videoproduktion und Bearbeitung: David Ladd (USRA); Musik: Visions of Grandeur, Universal Production Music, Fredrick Wiedmann

Beschreibung: Was wäre, wenn der einzige Weg zurück zur Erde hinter dem Mond vorbeiführen würde? So könnte man das Dilemma der Besatzung von Apollo 13 beschreiben, als sie 1970 versuchten, in ihrem unerwarteterweise zerstörten Raumschiff nach Hause zurückzukehren.

Der Mond in der Mitte ersetzte bei ihrer gefährlichen Reise den Funkkontakt mit dem Missionskontrollzentrum der NASA durch spektakuläre Ansichten der Mondrückseite. Diese Aussichten wurden nun aus detaillierten Bildern des Mondes, mit dem robotischen Lunar Reconnaissance Orbiter aufgenommen wurden, digital wiederbeschafft.

Zu Beginn dieses Videos sieht man, wie die Erde hinter der dem dunklen Mondrand verschwindet, während acht Minuten später an der gegenüberliegenden Seite des Mondes die Sonne aufgeht und anfängt, die ungewöhnliche, von Kratern zerfurchte Oberfläche zu beleuchten. Der Funkkontakt wurde wenige Minuten später wiederhergestellt, als eine sichelförmige Erde in Sicht kam.

Durch den Einfluss der Mondgravitation und mit Hilfe vieler fleißiger Ingenieure und Wissenschaftler der NASA öffnete Apollo 13 wenige Tage später ihre Fallschirme über dem Pazifischen Ozean und landete wohlbehalten auf der Erde.

Zur Originalseite

Ein Loch im Mars

Ein Loch im Mars; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL, U. Arizona

Beschreibung: Wie entstand dieses ungewöhnliche Loch im Mars? Das Loch wurde 2011 zufällig auf den staubigen Hängen des Vulkans Pavonis Mons auf dem Mars entdeckt, und zwar auf Bildern des HiRISE-Instruments an Bord der Robotersonde Mars Reconnaissance Orbiter, die derzeit den Mars umrundet.

Das Loch ist in repräsentativen Farben abgebildet, es scheint eine Öffnung zu einer Höhle zu sein, die unter der Oberfläche liegt und rechts im Bild teilweise beleuchtet ist. Untersuchungen dieses und folgender Bilder zeigten, dass die Öffnung etwa 35 Meter breit ist, während der innere Schattenwinkel vermuten lässt, dass die darunterliegende Höhle an die 20 Meter tief ist. Warum dieses Loch von einem runden Krater umgeben ist, bleibt Thema für Spekulationen, ebenso die volle Dimension der darunterliegenden Höhle.

Löcher wie dieses sind besonders interessant, weil ihr Inneres relativ gut vor der rauen Marsoberfläche geschützt ist, was sie zu relativ guten Kandidaten für Leben auf dem Mars macht. Diese Gruben sind daher geeignete Ziele für mögliche künftige Raumsonden, Roboter und sogar menschliche interplanetare Forscher.

Zur Originalseite

Jupiters Magnetfeld von Juno


Videocredit: NASA, JPL-Caltech, Harvard U., K. Moore et al.

Beschreibung: Wie stark ähnelt Jupiters Magnetfeld dem der Erde? Die Roboter-Raumsonde Juno der NASA fand heraus, dass Jupiters Magnetfeld überraschend komplex ist und Jupiter keine eindeutigen Magnetpole hat wie unsere Erde.

Dieses Video zeigt eine Momentaufnahme von Jupiters Magnetfeld, es wurde aus Daten von Juno animiert. Rote und blaue Farben bilden Regionen von Wolkenoberflächen mit stark positiven (südlichen) beziehungsweise negativen (nördlichen) Magnetfeldern ab. Um den Planeten verlaufen gedachte Linien mit konstanter Magnetfeldstärke.

Der erste Abschnitt des animierten Videos zeigt zunächst ein scheinbar relativ normales Dipolfeld, doch bald rotiert eine magnetische Region ins Sichtfeld, die nun als großer blauer Fleck bekannt ist, und die nicht direkt an Jupiters Rotationspolen ausgerichtet ist.

Im zweiten Abschnitt führt uns die anschauliche Animation über einen von Jupiters Rotationspolen, und es zeigt sich, dass die roten magnetischen Zentren ausgedehnt sind und stellenweise sogar ringförmig verlaufen. Ein besseres Verständnis von Jupiters Magnetfeld kann auch genauere Erklärungen für den rätselhaften planetenweiten Magnetismus der Erde liefern.

Zur Originalseite

Start des Solar Orbiters

Siehe Beschreibung. Start des Solar Orbiter auf einer Atlas V Trägerrakete; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Derek Demeter (Emil Buehler Planetarium)

Beschreibung: Wie beeinflusst das Wetter auf der Sonne die Menschheit? Um das herauszufinden, starteten die Europäische Weltraumagentur ESA und die NASA soeben den Solar Orbiter. Diese Roboter-Raumsonde, welche um die Sonne kreisen wird, beobachtet die Veränderungen des Lichts, des Sonnenwindes und des Magnetfeldes der Sonne nicht nur aus der üblichen Perspektive der Erde, sondern auch über und unter der Sonne.

Diese Langzeitbelichtung vom Start des Solar Orbiters zeigt den anmutigen Bogen der hellen Triebwerke einer Atlas-V-Rakete der United Launch Alliance, als sie den Satelliten von der Erde ins All brachte. In den nächsten Jahren nützt der Solar Orbiter die Schwerkraft von Erde und Venus, um die Ebene der Planeten zu verlassen und näher an die Sonne heranzukommen als Merkur.

Heftiges Wetter auf der Sonne, darunter Sonneneruptionen und koronale Massenauswürfe, können Stromnetze auf der Erde und Kommunikationssatelliten im Erdorbit empfindlich stören. Die Beobachtungen des Solar Orbiters werden voraussichtlich mit denen der Parker Solar Probe koordiniert, die 2018 gestartet wurde und ebenfalls die Sonne umkreist.

Solar Orbiter: Video des Starts
Zur Originalseite