Warum hat diese gewaltige Scheibe Lücken? Der aufregende mögliche Grund lautet: Planeten. Wie Planeten, die massereich genug sind, um diese Lücken zu bilden, so rasch entstanden sein können, ist ein Rätsel. Das Sternsystem HL Tauri ist nämlich nur etwa eine Million Jahre alt.
Das Entdeckungsbild der Lücken wurde mit den Teleskopen des neuen Atacama Large Millimeter Array (ALMA) in Chile erstellt. ALMA bildete die protoplanetare Scheibe beispiellos detailreich ab. Sie löst sogar Strukturen auf, die nur 40 Lichtminuten groß sind. Die Scheibe ist nur etwa 1500 Lichtminuten groß. Das energiearme Licht, das ALMA beobachtet, spähte dabei durch einen dazwischenliegenden Nebel aus Gas und Staub.
Die meisten Galaxien enthalten ein sehr massereiches Schwarzes Loch. Doch warum hat diese Galaxie drei? Der wahrscheinlichste Grund ist, dass die Galaxie J1502+1115 kürzlich durch eine Verschmelzung dreier kleinerer Galaxien entstand. Die zwei Schwarzen Löcher, die am engsten beisammen liegen, sind oben abgebildet. Sie wurden in Radiowellen von einer großen koordinierten Anordnung von Antennen aufgelöst. Die Radioteleskope sind über Europa, Asien und Afrika verteilt.
Diese beiden sehr massereichen Schwarzen Löcher sind etwa 500 Lichtjahre voneinander entfernt. Jedes hat wahrscheinlich an die 100 Millionen Sonnenmassen. J1502+1115 hat eine Rotverschiebung von 0,39. Derzeit ist J1502+1115 eines von nur wenigen bekannten Dreifachsystemen Schwarzer Löcher. Es wird erforscht, um mehr über die Galaxie und die Wechselwirkungen zwischen sehr massereichen Schwarzen Löchern im mittleren Alter unseres Universums zu erfahren.
Die Spiralarme der hellen, aktiven Galaxie M106 breiten sich auf diesem Multiwellenlängen-Porträt aus. Es entstand aus Bilddaten von Radio- bis Röntgenstrahlen und zeigt die Galaxie im ganzen elektromagnetischen Spektrum. M106 ist auch als NGC 4258 bekannt. Sie befindet sich im nördlichen Sternbild Jagdhunde. Die gut vermessene Entfernung zu M106 beträgt 23,5 Millionen Lichtjahre. Damit ist diese kosmische Szenerie etwa 60.000 Lichtjahre breit.
Typisch für große Spiralgalaxien sind dunkle Staubbahnen, junge Sternhaufen und Sternbildungsgebiete. Sie säumen die Spiralarme, die in einem hellen Kern zusammenlaufen.
Doch dieses Komposit betont zwei anomale Arme in Radiowellenlängen (violett) und Röntgenlicht (blau). Sie erheben sich anscheinend aus der Zentralregion von M106. Es sind Hinweise auf energiereiche Strahlströme aus Materie, die in die Galaxienscheibe rasen. Die Strahlen werden wahrscheinlich von Materie gespeist, die in ein massereiches zentrales Schwarzes Loch fällt.
Nein, Radioschüsseln senden keine Galaxien aus. Sie können aber welche entdecken. Dieses Bild einer dunklen Nacht über Neuseeland entstand vor etwa zwei Wochen. Darauf sind ein Radioteleskop und die Milchstraße fotogen überlagert.
In der klaren nächtlichen Himmelslandschaft leuchtet ein farbiges Südlicht in der Nähe der Hafenstadt Hobart. Das Bild entstand im australischen Tasmanien auf dem Planeten Erde. Mitten in der traumhaften Szenerie posiert die Tasmanian Earth Resources Satellite Station. Sie wird von den Lichtern der nahen Stadt beleuchtet.
An der Station wurden Daten von Instrumenten zur Erdbeobachtung empfangen, die im Weltraum stationiert sind. Dazu zählten MODIS und SeaWiFS der NASA. Seit 2011 ist sie stillgelegt. Das Bild wurde am 30. April fotografiert. Danach wurde die Station abgebaut.
Doch die Zentralwölbung unserer Milchstraße und die beiden hellen Begleitgalaxien leuchten immer noch am Südhimmel. Es sind die Große und die Kleine Magellansche Wolke. Die Kleine Magellansche Wolke leuchtet hinter einem zarten rote Polarlicht.
Es ist das bisher größte und komplexeste erdgebundene Astronomieprojekt. Was sieht es heute Nacht? Das Projekt Atacama Large Millimeter Array ALMA besteht aus 66 schüsselförmigen Antennen. Viele davon sind so groß wie ein kleines Haus. Sie befinden sich in der Atacamawüste im Norden Chiles in großer Höhe.
ALMA beobachtet den Himmel in hochfrequentem Radiolicht. Dieser Frequenzbereich wird normalerweise nur für die lokale Kommunikation verwendet, weil feuchte Luft ihn stark absorbiert. Die dünne Atmosphäre und die geringe Luftfeuchtigkeit über ALMA machen es jedoch möglich, auf neue und einzigartige Weise in diesem Frequenzbereich tief in unser Universum zu blicken.
Dieses Zeitraffervideo zeigt die Bewegung von vier ALMA-Antennen im Laufe einer Nacht. Der Mond geht im Video früh unter, während sich drei Schüsseln gemeinsam ausrichten. Hintergrundsterne wandern unaufhörlich hinauf. Das Zentralband unserer Milchstraße dreht sich und tritt schließlich rechts ab. In der Mitte gehen die Kleine und Große Magellansche Wolke am Horizont auf. Es sind Begleitgalaxien unserer Milchstraße.
Scheinwerfer von Autos beleuchten die Schüsseln für kurze Augenblicke. Oben zieht gelegentlich ein Satellit vorbei, der die Erde umkreist. Das Tageslicht beendet das Video, nicht aber die Beobachtungen von ALMA, die üblicherweise Tag und Nacht durchgeführt werden.
Im nahen Universum fand eine gewaltige Explosion statt. Nun ermitteln Großteleskope auf der ganzen Welt und im All. Der Gammablitz trägt die Bezeichnung GRB 130427A. Er wurde zuerst vom Satelliten Swift im Erdorbit im energiereichen Röntgenspektrum entdeckt. Dieser meldete den Ausbruch rasch der Erde.
Nur drei Minuten später fand das Teleskop ISON die Explosion im sichtbaren Licht. Es stellte seine extreme Helligkeit fest und gab genauere Koordinaten weiter. ISON in New Mexico hat einen halben Meter Durchmesser.
In den nächsten Minuten wurde die helle optische Entsprechung von mehreren rasch ausrichtbaren Teleskopen verfolgt. Dazu gehörten das 2-Meter-Teleskop P60 in Kalifornien, das 1,3-Meter-Teleskop PAIRTEL in New Mexico und das 2 Meter große Faulkes Telescope North auf Hawaii.
In nur zwei Stunden ermittelte das 8,2-Meter-Teleskop Gemini Nord auf Hawaii eine Rotverschiebung von 0,34. Damit positionierte es die Explosion in eine Entfernung von etwa 3,6 Milliarden Lichtjahren. Das ist in kosmologischen Größenordnungen relativ nahe.
Daten der RAPTOR-Ganzhimmelsüberwachung wurden analysiert. Sie wurden schon zuvor aufgenommen. Dabei entdeckt man eine sehr helle optische Entsprechung mit 7,4 Größenklassen. Diese trat 50 Sekunden vor dem Swift-Auslöseimpuls auf.
GRB 130427A war der hellste Ausbruch der letzten Jahre. Auch das Very Large Array VLA detektierte in energiearmen Radiowellenlängen ein Signal von GRB 130427A. Auch der Satellit Fermi maß es, und zwar in den höchsten je gemessenen Energiebereichen.
Neutrinodetektoren, Gravitationswellenteleskope und Observatorien, die für das Aufspüren extrem energiereicher Photonen gebaut wurden, suchen in ihren Daten nach einem Signal von GRB 130427A.
Diese Animation zeigt, wie der ganze Gammastrahlenhimmel einen Augenblick lang vom intensiven Leuchten von GRB 130427A überstrahlt wird. Die optische Entsprechung wird weithin beobachtet, denn es besteht die Möglichkeit, dass bald das Leuchten einer klassischen Supernova folgt.
Komet PanSTARRS (C/2011 L4) zog am 5. März rasch über den Südhimmel. Auf dieser Dämmerungsszene folgt er der Sonne, die schon unter dem westlichen Horizont steht. Im Vordergrund steht das australische CSIRO Parkes-Observatorium. Es ist eine schwenkbare Schüssel mit einem Durchmesser von 64 Metern.
Die Radioantenne ist in der Kometenforschung des Raumfahrtzeitalters keine Unbekannte. Im März 1986 folgte die Parkes-Antenne der ESA-Raumsonde Giotto, als diese am Kometen Halley vorbeiflog. Giotto schickte damals die ersten Nahaufnahmen von Halleys Kern, die jemals aufgenommen wurden.
Komet PanSTARRS ist mit bloßem Auge zu sehen. Er erreichte am 5. März die größte Annäherung an die Erde. Seine kleinste Distanz zur Sonne erreicht er am 10. März. PanSTARRS ist unterwegs nach Norden.
Endlich beginnt der lang erwartete Auftritt auf der Nordhalbkugel. Man sieht den Kometen nach Sonnenuntergang tief am westlichen Horizont. Am 12. März lohnt es sich, den Kometen nahe beim jungen Sichelmond zu suchen.