Eine Botschaft von der Erde

1974 wurde bei der Einweihung des Arecibo-Observatoriums diese Botschaft zum Kugelsternhaufen M13 gesendet

Bildcredit: Frank Drake (UCSC) et al., Arecibo-Observatorium (Cornell U.); Lizenz: Arne Nordmann (Wikimedia)

Beschreibung: Was versuchen die Erdlinge uns zu sagen? Diese Nachricht wurde 1974 von der Erde zum Kugelsternhaufen M13 gesendet. Das Diagramm zeigt eine Serie aus Einsen und Nullen, die während der Einweihung des Arecibo-Observatoriums gesendet wurde – es ist immer noch eines der größten Einzel-Radioteleskope der Welt.

Dieser Versuch einer extraterrestrischen Kommunikation war eher zeremoniell – die Menschheit sendet nämlich unabsichtlich regelmäßig Radio- und Fernsehsignale in den Weltraum. Selbst wenn diese Nachricht empfangen würde – M13 ist so weit entfernt, dass wir fast 50.000 Jahre auf die Antwort warten müssten.

Diese Nachricht vermittelt ein paar einfache Fakten über die Menschheit und ihr Wissen: Von links nach rechts stehen die Zahlen von eins bis zehn, danach Atome wie Wasserstoff und Kohlenstoff, einige interessante Moleküle, DNA, ein Mensch mit Beschreibung, Grundlagen unseres Sonnensystems und Einzelheiten des sendenden Teleskops.

Derzeit gibt es mehrere Versuche, außerirdische Intelligenz zu finden, unter anderem einen, bei dem Sie Ihren Computer zu Hause verwenden können.

Expertendiskussion: Wie entdeckt die Menschheit erstmals außerirdisches Leben?
Zur Originalseite

Radio, The Big Ear und das Wow!-Signal

Das Radioteleskop The Big Ear der staatlichen Universität Ohio lauschte als erstes nach außerirdischen Signalen und entdeckte im August 1977 das Wow!-Signal.

Bildcredit und Bildrechte: Rick Scott

Beschreibung: Seit den frühen Tagen von Radio und Fernsehen senden wir großzügig Signale ins All. Seit einiger Zeit lauschen wir auch. Ein großes Radioteleskop der staatlichen Universität Ohio, das liebevoll The Big Ear genannt wurde, war einer der ersten Lauscher.

Das große Ohr“ war etwa so groß wie drei Footballfelder und bestand aus einer gewaltigen metallenen Grundfläche mit zwei zaunartigen Reflektoren – einer davon war fest montiert, der andere schwenkbar. Mithilfe der Erdrotation tastete es den Himmel ab.

Dieses Foto des früheren Studenten und Big-Ear-Volontärs Rick Scott blickt über die Bodenebene zum fest montierten Reflektor, im Vordergrund stehen die Hörner des Radiofrequenzempfängers. Anfang 1965 wurde das Big Ear zu einer ehrgeizigen Vermessung des Radiohimmels eingesetzt. In den 1970er Jahren lauschte es als erstes Teleskop ständig nach Signalen außerirdischer Zivilisationen.

Einen aufregenden Moment lang registrierte das „große Ohr“ im August 1977 ein sehr starkes, unerwartetes Signal, das als das Wow!-Signal bezeichnet wurde. Die Quelle des Signals, das leider nur einmal zu hören war, konnte nicht ermittelt werden. Im Mai 1998 wurden die letzten Teile des Big Ear abgerissen.

Expertendiskussion: Wie entdeckt die Menschheit erstmals außerirdisches Leben?
Zur Originalseite

Das Galaktische Zentrum von Radio bis Röntgen

Sgr A*, das Zentrum unserer Galaxis mit einem Schwarzen Loch, leuchtet in jeder Art von Licht; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: NASA, CXC, UMass, D. Wang et al.; Radio: NRF, SARAO, MeerKAT

Beschreibung: Auf wie viele Arten leuchtet das Zentrum unserer Galaxis? Diese rätselhafte Region, etwa 26.000 Lichtjahre entfernt ist und im Sternbild Schütze (Sagittarius) liegt, leuchtet in jeder Art von Licht, die wir sehen können.

Für dieses Bild wurde mit dem Röntgenobservatorium Chandra der NASA im Erdorbit energiereiche Röntgenstrahlung abgebildet, diese erscheint in Grün und Blau. Die rot gefärbte Abbildung der energiearmen Radiostrahlung stammt von der Teleskopanordnung MeerKAT des SARAO, die auf der Erde stationiert ist. Rechts neben der farbenfrohen Zentralregion liegt Sagittarius A (Sgr A), eine starke Radioquelle, die sich an derselben Stelle befindet wie Sgr A*, das sehr massereiche Schwarze Loch im Zentrum unserer Galaxis.

Heißes Gas, das Sgr A* umgibt, sowie eine Reihe parallel verlaufender Radiofilamente, die als der „Bogen“ bezeichnet werden, sind links neben der Bildmitte zu sehen. Weiters verlaufen im Bild zahlreiche ungewöhnliche einzelne Radiofilamente. Viele Sterne kreisen in und um Sgr A*, außerdem zahlreiche kleine Schwarze Löcher und dichte Sternkerne, die als Neutronensterne und Weiße Zwerge bekannt sind. Das sehr massereiche Schwarze Loch im Zentrum der Milchstraße wird gegenwärtig vom Event Horizon Telescope abgebildet.

Aktivitäten: NASA-Wissenschaft zu Hause
Zur Originalseite

Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Der alte Mond in den Armen des neuen Mondes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Stan Honda

Beschreibung: Heute Nacht ist der Mond wieder jung, doch dieses faszinierende Bild eines jungen Mondes nahe dem westlichen Horizont wurde am 10. Oktober kurz nach Sonnenuntergang fotografiert. Die sonnenbeleuchtete, nur zwei Tage alte Sichel umarmt auf der Mondscheibe den Erdschein – Erdlicht, das von der Nachtseite des Mondes reflektiert wird.

Am Horizont vor der abklingenden Dämmerung stehen die Silhouetten der Antennenschüsseln von Radioteleskopen des Very Large Array in New Mexico (Planet Erde).

Die Aussicht auf dem Mond wäre ebenfalls beeindruckend. Wenn der Mond am Erdhimmel als schmale Sichel erscheint, wäre auf der Mondoberfläche eine strahlend helle, fast volle Erde zu sehen. Vor 500 Jahren beschrieb Leonardo da Vinci den Erdschein als Sonnenlicht, das von den Ozeanen der Erde reflektiert wird und die dunkle Mondoberfläche beleuchtet.

Zur Originalseite

Strichspuren und die Bracewell-Radiosonnenuhr

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Miles Lucas am NRAO

Beschreibung: Sonnenuhren messen anhand der Schattenposition die Rotation der Erde und zeigen die Tageszeit an. Daher passt es gut, dass diese Sonnenuhr am Radioteleskop-Observatorium Very Large Array in New Mexico an die Geschichte der Radioastronomie und den Radioastronomiepionier Ronald Bracewell erinnert.

Die Radiosonnenuhr wurde aus Teilen einer Sonnenvermessungs-Radioteleskopanordnung gebaut, die Bracewell ursprünglich in der Nähe des Campus der Universität Stanford gebaut hatte. Mit Bracewells Anlage wurden Daten zur Planung der ersten Mondlandung gesammelt, ihre Säulen wurden von Gastwissenschaftlern und Radioastronomen signiert, darunter zwei Nobelpreisträger.

Wie bei den meisten Sonnenuhren folgt der Schatten, den der Gnomon in der Mitte wirft, den Markierungen für die Sonnenzeit des Tages sowie die Sonnenwenden und Äquinoktien. Doch Markierungen der Radiosonnenuhr sind auch nach der lokalen siderischen Zeit angeordnet. Diese Markierungen zeigen die Position der unsichtbaren Radioschatten dreier heller Radioquellen am irdischen Himmel: den Schatten des Supernovaüberrestes Cassiopeia A, der aktiven Galaxie Cygnus A und der aktiven Galaxie Centaurus A.

Siderische Zeit bedeutet einfach „Sternzeit“ – dabei misst man die Erdrotation an Sternen und fernen Galaxien. Diese Rotation spiegelt sich auf dieser einstündigen Aufnahme wider. Über der Bracewell-Radiosonnenuhr ziehen die Sterne konzentrische Spuren um den Himmelsnordpol.

Zur Originalseite

Geminiden des Nordens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Yin Hao

Beschreibung: Der alljährliche Geminiden-Meteorstrom auf der Erde enttäuschte nicht, als unser lieblicher Planet durch Staub des aktiven Asteroiden 3200 Phaethon pflügte. Die Meteore, die auf dieser Nachtlandschaft der Nordhalbkugel fotografiert wurden, strömen vom Radianten des Meteorstroms in den Zwillingen aus.

Für dieses Bild wurden in der Nacht von 12. auf 13. Dezember im Zeitraum von 8,5 Stunden 37 Einzelbilder mit Meteorspuren fotografiert. Für das Ergebniskomposit wurden am sternklaren Himmel ausgerichtet, und zwar über einer Radioantenne der Radioteleskopanordnung MUSER zur Sonnenbeobachtung an der astronomisch benannten Mingantu-Station in der Inneren Mongolei in China, ungefähr 400 Kilometer von Peking entfernt.

Sirius, der Alphastern von Canis Major, leuchtet hell über der Radioschüssel, die Milchstraße reicht bis zum Zenit. Der gelbliche Beteigeuze rechts neben der nördlichen Milchstraße ist ein Blickfang im Orion. Der Radiant des Stroms liegt links oben hoch über dem Horizont bei Castor und Pollux, den Zwillingssternen in Gemini. Der Radianteffekt entsteht durch die Perspektive, die parallelen Meteorbahnen laufen scheinbar in der Ferne zusammen. Geminiden-Meteore treten mit etwa 22 Kilometern pro Sekunde in die Erdatmosphäre ein.

Schicken Sie an APOD: Die (bisher) besten Bilder des Geminiden-Meteorstroms 2017
Zur Originalseite

Mond, Merkur und Radioantenne in der Dämmerung

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Pierluigi Giacobazzi

Beschreibung: Merkur stand am 29. September in der Morgendämmerung beim Mond und war so weit wie möglich von der Sonne entfernt. Der innerste Planet erreichte am Himmel des Planeten Erde fast seine größte Elongation. Auf dieser bunten Szene stehen die abnehmende sonnenbeleuchtete Mondsichel und die erdbeleuchtete Nachtseite des Mondes beim flüchtigen Merkur. Der neue Mond lag in den Armen des alten Mondes. Unten befindet sich die italienische Medicina Radio Astronomical Station nahe Bologna mit einer Reihe niedriger Antennen, die zur ersten italienischen Radioteleskopanordnung mit der Bezeichnung „Kreuz des Nordens“ gehört, und eine 32 Meter große Parabolantenne. Natürlich müssen Mondbeobachter am 8. Oktober nicht frühmorgens aufstehen. Nach Sonnenuntergang steht der Mond bei der Internationale Mondbeobachtungsnacht hoch und hell als Halbmond am Abendhimmel.

Zur Originalseite

Five hundred meter Aperture Spherical Telescope

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Jeff Dai (TWAN)

Beschreibung: Das Five-hundred-meter Aperture Spherical Telescope (FAST) ist in ein natürliches Becken eingebettet. Es liegt in der abgelegenen, bergigen Provinz Guizhou im Süden von China. Dieses Foto zeigt das neue Radioteleskop mit dem Spitznamen Tianyan oder „Auge des Himmels“. Es wurde am 25. September kurz vor Beginn der Testphase für den Betrieb fotografiert. Seine aktive Oberfläche kann ausrichten und fokussieren. Seine gewaltige Parabolantenne wurde aus 4450 einzelnen dreieckigen Paneelen konstruiert. Mit einem Antennendurchmesser von 500 Metern ist FAST das größte verkleidete Radioteleskop auf dem Planeten Erde, das aus nur einem Spiegel besteht. FAST erforscht das Universum in Radiowellenlängen. Es wird Emissionen von Wasserstoff in der Milchstraße und fernen Galaxien finden. Es entdeckt blasse galaktische und extragalaktische Pulsare und sucht nach möglichen Radiosignalen von Außerirdischen.

Zur Originalseite

PanSTARRS über Parkes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: John Sarkissian (CSIRO Parkes Observatory)

Beschreibung: Komet PanSTARRS (C/2011 L4), der am 5. März schnell über den Südhimmel zog, folgt auf dieser Dämmerungsszene der Sonne unter dem westlichen Horizont. Im Vordergrund befindet sich das australische CSIRO Parkes-Observatorium, eine 64 Meter große, steuerbare Schüssel, die in der Kometenforschung des Raumfahrtzeitalters keine Unbekannte ist. Im März 1986 folgte die Parkes-Antenne der ESA-Raumsonde Giotto, als diese am Kometen Halley vorbeiflog und die ersten je erstellten Nahaufnahmen von Halleys Kern machte. Komet PanSTARRS ist mit bloßem Auge zu sehen und erreichte am 5. März die geringste Entfernung zur Erde. Seine größte Annäherung an die Sonne erreicht er am 10. März. Auf dem Weg nach Norden beginnt nun PanSTARRS lang ersehnter Auftritt auf der Nordhalbkugel nach Sonnenuntergang tief am westlichen Horizont. Halten Sie am 12. März Ausschau nach dem Kometen, wenn er in der Nähe des jungen Sichelmondes den westlichen Horizont umarmt.

Zur Originalseite

Antennendämmerung

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Alex Cherney (Terrastro, TWAN)

Beschreibung: Zu den wandernden Planeten Venus und Jupiter gesellte sich am Osthorizont des 15. Juli ein alter Sichelmond. Diese heitere südliche Himmelsansicht der lange erwarteten Konjunktion in der Dämmerung umfasste auch den lieblichen Sternhaufen der Plejaden und die hellen Sterne Aldebaran und Beteigeuze, die am Himmel in einer Reihe standen.

Um die Sterne und Sternbilder leichter zu erkennen, schieben Sie einfach den Mauspfeil über das Bild. Das Radioteleskop im Vordergrund ist die Parkes-Antenne in New South Wales (Australien) mit einem Durchmesser von 64 Metern.

Die große, schwenkbare Antenne ist nicht nur für die Erforschung des fernen Universums in Radio-Wellenlängen bekannt, sondern auch für ihren außergewöhnlich guten Fernsehempfang vom Mond. Am 21 Juli 1969 empfing die Schüssel Übertragungen vom Mond, die den Bewohnern des Planeten Erde die Beobachtung der Apollo-11-Mondbegehung ermöglichten.

Zur Originalseite