Koronaler Regen auf der Sonne

Videocredit: Solar Dynamics Observatory, SVS, GSFC, NASA; Musik: Thunderbolt von Lars Leonhard

Regnet es auf der Sonne? Ja. Aber das, was herunterfällt, ist kein Wasser, sondern extrem heißes Plasma. Das geschah zum Beispiel Mitte Juli 2012 nach einem Ausbruch auf der Sonne. Dieser Ausbruch erzeugte einen koronalen Massenauswurf und eine mittelgroße Sonnenfackel.

Noch ungewöhnlicher war jedoch, was danach geschah. Der Film zeigt Plasma in der nahen Sonnenkorona, das abkühlte und zurückfiel. Dieses Phänomen wird als koronaler Regen bezeichnet. Die geladenen Elektronen, Protonen und Ionen im Regen wurden elegant entlang der Magnetfeldschleifen auf der Sonnenoberfläche kanalisiert. Die Szene erinnert an eineinen surrealen dreidimensionalen Wasserfall ohne Quelle.

Das überraschend ruhige Spektakel ist hier in Ultraviolettlicht abgebildet. Es zeigt Materie, die mit einer Temperatur von etwa 50.000 Kelvin leuchtet. Jede Sekunde im Zeitraffervideo dauert in Echtzeit etwa 6 Minuten. Somit dauerte die ganze koronale Regenszene etwa 10 Stunden.

Zur Originalseite

Ein Sonnenballett


Videocredit: NASA/Goddard/SDO-AIA-Team

Manchmal scheint die Sonne zu tanzen. Am vergangenen Silvesterabend zeigte die NASA-Raumsonde Solar Dynamics Observatory SDO eine eindrucksvolle Protuberanz, die auf der Sonnenoberfläche ausbrach. SDO befindet sich in einer Umlaufbahn um die Sonne.

Dieses Zeitraffervideo komprimiert vier Stunden. Es zeigt die dramatische Explosion im Ultraviolettlicht. Besonders interessant ist das verschlungene Magnetfeld. Es inszeniert eine Art Sonnenballett für das heiße Plasma, während das Plasma zur Sonne zurückfällt. Die Größenordnung der zerfallenden Protuberanz ist gewaltig – die ganze Erde würde leicht unter den fließenden Vorhang aus heißem Gas passen.

Eine reglose Protuberanz bleibt normalerweise etwa einen Monat lang bestehen. Sie kann als koronaler Massenauswurf (KMA) ausbrechen, der heißes Gas ins Sonnensystem schleudert. Der Energiemechanismus, der zu einer Sonnenprotuberanz führt, wird weiterhin erforscht. Dieses Jahr nähert sich die Sonne einem Sonnenmaximum. Sonnenaktivitäten wie ausbrechende Protuberanzen treten dann wohl häufiger auf.

Zur Originalseite

Sonnenfinsternis über Queensland

Der schwarze Kreis im Bild ist der Mond. Oben blitzt ein Scheibchen Sonne über den Rand, ein Diamantring und einige Bailysche Perlen. Oben ragen rote Protuberanzen über den Mondrand.

Bildcredit und Bildrechte: Phil Hart

Der Neumond am 13. November (UT) brachte Teilen des Planeten Erde eine totale Sonnenfinsternis. Ein Großteil des Finsternispfades, wo die Totalität zu sehen war, fiel auf den Südpazifik. Der dunkle Kernschatten des Mondes begann seine Reise bei Nordaustralien laut Ortszeit am Mittwoch früh.

Auf dem Pfad entstand dieser Schnappschuss mit einem Teleskop am Mulligan-Highway von Port Douglas. Er zeigt die Mondsilhouette am Himmel über Queensland. Die Sonnenscheibe war fast ganz bedeckt. Sie ist noch zu sehen und von einer Andeutung der blassen Sonnenkorona umgeben.

Planetengroße Protuberanzen ragen über dem Sonnenrand. Durch die Lücken im zerklüfteten Profil des Mondrandes strömt Sonnenlicht. Es erzeugt die gleißenden, flüchtigen Bailyschen Perlen.

Zur Originalseite

Schwarze Sonne und invertiertes Sternenfeld

Mitten im Bild schwebt ein blaugrauer Ball, der am Rand heller wird. Er ist von hellen und dunklen Fasern überzogen und granuliert. Der helle Hintergrund ist schwarz gesprenkelt.

Bildcredit und Bildrechte: Jim Lafferty

Wirkt diese dunkle Kugel irgendwie vertraut? Vielleicht, denn es ist unsere Sonne. Im Bild wurde die Sonne in einer sehr speziellen roten Farbe des Lichts fotografiert, dann auf Schwarz-weiß reduziert und schließlich invertiert. Das Ergebnis wurde in ein ebenfalls invertiertes Sternenfeld gesetzt.

Im Bild der Sonne sind lange helle Fasern zu sehen, aber auch dunkle aktive Regionen. Es sind Protuberanzen, die am Rand hochragen. Dahinter ist ein bewegter Teppich aus heißem Gas. Die Oberfläche unserer Sonne wurde in den letzten zwei Jahren sehr belebt, weil sie sich einem Maximum an Sonnenaktivität nähert. Das ist eine Zeit, in der die Magnetfelder an der Oberfläche sehr komplex sind.

Neben einer aktiven Sonne kann auch ausgestoßenes Plasma malerisch sein – nämlich dann, wenn es auf die Erdmagnetosphäre trifft und Polarlichter hervorruft.

Zur Originalseite

Eine Sonnenprotuberanz bricht aus

Rechts ragt ein Teil der Sonne ins Bild. Am linken Sonnenrand leuchtet eine helle Aktive Region, und quer über das ganze Bild verläuft eine Protuberanz, die links weit ins All hinausreicht.

Bildcredit: GSFC der NASA, SDO AIA Team

Was ist mit unserer Sonne passiert? Nichts Besonderes – sie stieß bloß eine Protuberanz aus. Ende letzten Monats brach plötzlich eine lange bestehende Sonnenprotuberanz in den Weltraum aus und erzeugte einen mächtigen koronalen Massenauswurf (KMA). Die Protuberanz wurde tagelang vom variablen Magnetfeld der Sonne in Schwebe gehalten. Doch der Zeitpunkt des Ausbruchs war unerwartet.

Die Explosion wurde vom Solar Dynamics Observatory (SDO), das die Sonne umkreist, genau beobachtet. Die Sonne schleuderte Elektronen und Ionen ins Sonnensystem. Einige davon erreichten drei Tage später die Erde und trafen auf ihre Magnetosphäre. Dabei entstanden sichtbare Polarlichter.

Über der ausbrechenden Protuberanz verlaufen auf dem Ultraviolettbild Plasmaschleifen um eine aktive Region. Keine Sorge, wenn ihr die Polarlichtschau verpasst habt. In den nächsten zwei Jahren erreicht unsere Sonne ein Maximum an Sonnenaktivität. Das verspricht weitere KMA und noch mehr Polarlichter auf der Erde.

Zur Originalseite

Ein Filament über der Sonne

Die Sonne ist schwarzweiß und invertiert dargestellt, daher ist der Rand heller. Links schwebt eine riesige lange Protuberanz über der Oberfläche, rechts ist eine Sonnenfleckengruppe.

Bildcredit und Bildrechte: Bret Dahl

Schwebt da eine Wolke über der Sonne? Ja, aber sie ist ganz anders als die Wolken, die über der Erde schweben. Die lange, helle Struktur links im Negativbild ist eine Sonnenprotuberanz. Sie besteht hauptsächlich aus geladenem Wasserstoff, der von den gekrümmten Magnetfeldern der Sonne hochgehalten wird.

Im Gegensatz dazu sind Wolken über der Erde viel kühler. Sie bestehen hauptsächlich aus winzigen Wassertröpfchen. Diese werden von der Luftbewegung hochgehalten, weil sie so wenig wiegen.

Diese Protuberanz wurde vor etwa zwei Wochen in der Nähe der aktiven Sonnenregion AR 1535 fotografiert. Rechts neben der Protuberanz ist eine dunkle Sonnenfleckengruppe.

Protuberanzen bleiben meist einige Tage bis eine Woche bestehen. Eine lange Protuberanz wie diese kann jedoch einen Monat oder länger über der Sonnenoberfläche schweben. Manche Protuberanzen lösen große Hyper-Flares aus, wenn sie plötzlich über der Sonne zusammenbrechen.

Zur Originalseite

AR1520: Inseln in der Photosphäre

Eine riesige, ausgeprägte Sonnenfleckengruppe ist bildfüllend dargestellt, umgeben von Granulation auf der Sonnenoberfläche.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Sonnenflecken schwimmen in einem Meer aus Plasma und sind von Magnetfeldern verankert. Es sind dunkle Inseln in der Photosphäre der Sonne, so groß wie Planeten. Die Photosphäre ist die hell leuchtende Oberfläche der Sonne.

Eine Sonnenfleckengruppe wirkt dunkel, weil sie etwas kühler ist als die umgebende Oberfläche. Diese Gruppe wurde am 11. Juli auf dieser Teleskop-Nahaufnahme abgelichtet. Das Bild ist ungefähr 160.000 Kilometer breit.

Die Sonnenflecken sind mitten in der Aktiven Region AR1520. Diese überquert derzeit die Vorderseite der Sonne. Am 12 Juli brach in AR1520 eine Sonnenfackel der X-Klasse mit einem koronalen Massenauswurf aus. Dieser Ausbruch entließ etwas von der Energie, die in den gekrümmten Magnetfeldern der Region gespeichert ist.

Der koronale Massenauswurf bewegt sich in unsere Richtung. Er erreicht uns wohl heute und löst vielleicht geomagnetische Stürme aus. Es könnte also sein, dass am Wochenende am Himmel des Planeten Erde einige Polarlichter leuchten, womöglich sogar am Sonntagmorgen in der Dämmerung zusammen mit einer Konjunktion heller Planeten und dem Sichelmond.

Zur Originalseite

Venus am Rand

Vor dem Rand der Sonne mit nebelartigen Protuberanzen kreuzt die Venus. Sie ist von einem sehr schmalen hellen Rand umgeben, es ist ihre Atmosphäre, durch die Sonnenlicht gebeugt wird.

Bildcredit: NAOJ, JAXA, NASA, Lockheed Martin

Als der Transit am 6. Juni 2012 begann, querte der Schwesterplanet der Erde aus Sicht der Raumsonde Hinode den Rand der Sonne. In der Vergangenheit wurde der zeitliche Verlauf der Randpassage bei einem seltenen Transit gemessen, um die Entfernung zur Venus zu triangulieren. So wurde die Distanz zwischen Erde und Sonne – die sogenannte Astronomische Einheit – ermittelt.

Aktuelle Weltraumansichten wie diese zeigen das Ereignis vor dem eindrucksvollen Hintergrund der turbulenten Sonnenoberfläche, auf der Protuberanzen entlang gekrümmter Magnetfelder über den Sonnenrand reichen. Der dünne Lichtring um die dunkle Silhouette des Planeten Venus ist Sonnenlicht, das von der dichten Atmosphäre der Venus gebrochen wird.

Zur Originalseite