Der Herznebel in Wasserstoff, Sauerstoff und Schwefel

Der Nebel im Bild erinnert an ein Herz. Außen sind orange-braune Nebel, im Inneren leuchtet ein blauer Hintergrund. Der Herznebel liegt im Sternbild Kassiopeia.

Bildcredit und Bildrechte: Peter Jenkins

Woher bekommt der Herznebel seine Energie? Der große Emissionsnebel ist als IC 1805 katalogisiert und erinnert als Ganzes an ein Herz. Die Energie für das Leuchten im Nebel stammt von Sternwinden und der Strahlung massereicher, heißer Sterne, die sich im jungen Sternhaufen Melotte 15 befinden. Sie sorgen auch für die Form der Gas- und Staubwolken.

Das detailreiche Teleskopbild kartiert das Leuchten der schmalen Emissionslinien der Atome von Wasserstoff, Sauerstoff und Schwefel. Sie sind im Nebel überall vorhanden. Das Sichtfeld ist am Himmel etwas breiter als zwei Grad. Es ist somit größer als vier Vollmonde nebeneinander. Das kosmische Herz schlägt im Sternbild Kassiopeia. Sie ist die stolze mythische Königin von Aithiopia.

Zur Originalseite

Der Adler und der Schwan

In einem Sternfeld breiten sich rötliche Nebel aus. Die Zentren der größeren Nebel leuchten hell und bläulich. Dort findet Sternbildung statt. Die Nebel sind M16 im Sternbild Schlange und M17 im Sternbild Schütze. Beide wurden von Hubble abgebildet.

Bildcredit und Bildrechte: Josep Drudis

Der Adlernebel und der Schwanennebel breiten sich auf dieser weiten Sternlandschaft aus. Das Bild entstand mit Teleskop, es zeigt eine Region im Sagittarius-Spiralarm, die beim Zentrum unserer Milchstraße liegt. In den kosmischen Wolken liegen hellere Regionen mit aktiver Sternbildung.

Der Adlernebel ist auch als M16 bekannt, er ist oben. M17, der Schwan, steht unten. Sie liegen in einem Spiralarm, der von rötlichen Emissionen und staubigen, dunklen Nebeln durchzogen ist. Das rötliche Leuchten ist typisch für atomaren Wasserstoff.

M17 wird auch Omeganebel genannt. Er ist ungefähr 5500 Lichtjahre entfernt. Die Distanz zu M16 beträgt zirka 6500 Lichtjahre. Die Zentren beider Nebel sind bekannte Motive des Weltraumteleskops Hubble, das Nahaufnahmen von Sternbildungsregionen machte.

Dieses Mosaikbild ist am Himmel ungefähr 3 Grad breit. Mit Schmalband-Daten und hoch aufgelösten Bildern wurden die Zentralregionen von Adler und Schwan verbessert. Die weiten Flügel des Adlernebels breiten sich fast 120 Lichtjahre aus. Der Schwan ist mehr als 30 Lichtjahre breit.

Zur Originalseite

Nahaufnahme des Pelikannebels

Unten im Bild breitet sich ein Staubnebel aus. Daraus ragt ein brauner Staubhügel auf, aus dem eine kleine dunkle Röhre mit zwei Herbig-Haro-Strahlen ragt. Über dem blau leuchtenden Hintergrund sind dunkle Staubfasern verteilt.

Bildcredit und Bildrechte: Sara Wager

Der markante Emissionsgrat in dieser lebhaften Himmelslandschaft heißt IC 5067. Er ist Teil einer größeren Emissionsregion mit markanter Form. Diese kennt man landläufig als Pelikannebel.

Der Grat ist etwa 10 Lichtjahre groß und folgt der Kurve von Kopf und Hals des kosmischen Pelikans. Die fantastischen dunklen Formen im Sichtfeld sind Wolken aus kühlem Gas und Staub. Sie werden von der energiereichen Strahlung heißer, massereicher junger Sterne geformt.

Doch auch in den dunklen Formen entstehen Sterne. Die Zwillingsstrahlen an der Spitze des langen dunklen Tentakels links neben der Mitte sind verräterische Zeichen eines eingebetteten Protosterns. Er ist als Herbig-Haro 555 (HH 555) katalogisiert. Auch andere Herbig-Haro-Objekte im Bildfeld sind Hinweise auf Protosterne.

Der Pelikannebel ist auch als IC 5070 bekannt. Er ist etwa 2000 Lichtjahre entfernt. Ihr findet ihn nordöstlich vom hellen Sterns Deneb im hoch fliegenden Sternbild Schwan.

Zur Originalseite

Eine Dreiergruppe im Schützen

Zwischen zarten Sternen sind leuchtende Emissionsnebel verteilt. Unten ist der Trifidnebel, der von dunklen Staubbahnen dreigeteilt ist. Oben ist der rötliche Lagunennebel.

Bildcredit und Bildrechte: Josep Drudis

Diese drei hellen Nebel sind beliebte Ziele bei Teleskopreisen im Sternbild Schütze und in den dicht gefüllten Sternfeldern der zentralen Milchstraße. Im 18. Jahrhundert kartierte der kosmische Tourist Charles Messier zwei davon. Der große Nebel links oben ist M8. Am unteren Bildrand leuchtet der farbenprächtige M20. Die dritte Emissionsregion ist NGC 6559. Sie liegt rechts neben M8. Eine dunkle Staubbahn trennt ihn vom größeren Nebel.

In allen drei Gebieten entstehen Sterne. Die Regionen sind ungefähr 5000 Lichtjahre von uns entfernt. Der ausgedehnte M8 ist mehr als 100 Lichtjahre breit. Man nennt ihn auch Lagunennebel. Der landläufige Name von M20 ist Trifid. Darin erzeugt leuchtender Wasserstoff die markante rote Farbe im Emissionsnebel. Die blauen Farbtöne im Trifid bilden einen starken Kontrast dazu. Sie stammen von Sternenlicht, das vom Staub reflektiert wird.

Das farbige Komposit der Landschaft am Himmel entstand mit zwei Teleskopen. Mit einem Teleskop entstand ein Weitwinkelbild der Region. Das andere Fernrohr nahm Bildausschnitte in höherer Auflösung auf.

Zur Originalseite

IC 1396: Emissionsnebel im Kepheus

Die Emissionsregion IC 1396 wurde hier in gedämpften Farben abgebildet. Unten in der Mitte ragt der dunkle Elefantenrüsselnebel auf.

Bildcredit und Bildrechte:  César Blanco González

Der Emissionsnebel IC 1396 mischt leuchtendes kosmisches Gas und dunkle Staubwolken im hohen, fernen Sternbild Kepheus. Ein Zentralstern sorgt für die Energie in der Sternbildungsregion. Sie ist Hunderte Lichtjahre breit. Am Himmel umfasst sie mehr als drei Grad. Die Region ist fast 3000 Lichtjahre vom Planeten Erde entfernt.

Eine interessante dunkle Form in IC 1396 ist der krumme Elefantenrüsselnebel. Er liegt unter der Mitte. In den dunklen Formen könnten durch Gravitationskollaps immer noch Sterne entstehen. Doch wenn die dichteren Wolken von der starken Strahlung und den Winden der neuen Sterne abgetragen werden, verlieren alle noch entstehenden Sterne den Zugang zu ihrem Vorrat an Sternmaterial.

Die prächtige Farbansicht ist ein Komposit. Es wurde aus Bildern erstellt, die mit Schmalbandfiltern aufgenommen wurden. Die Strahlung von atomarem Sauerstoff, Wasserstoff und Schwefel im Nebel sind in blauen, grünen und roten Farbtönen abgebildet.

Zur Originalseite

Komposit mit Messier 20 und 21

Mitten im Bild schwebt der Trifidnebel. Er ist von vielen Sternen umgeben. Unmittelbar am Rand verläuft eine zarte blaue Nebelwolke, der Hintergrund ist voller roter Nebel.

Bildcredit und Bildrechte: Martin Pugh

Der prachtvolle Trifidnebel ist auch als Messier 20 bekannt. Er ist etwa 5000 Lichtjahre entfernt und eine farbige Studie an kosmischen Kontrasten. Dieses fast 1 Grad breite Feld teilt er sich mit dem offenen Sternhaufen Messier 21 links oben.

Staubbahnen spalten Trifid in drei Teile. Er ist ungefähr 40 Lichtjahre groß und an die 300.000 Jahre alt. Das macht ihn zu einer der jüngsten Regionen mit Sternbildung am Himmel. In die Staub- und -gaswolken der Entstehung sind neue und junge Sterne eingebettet. Die Entfernung zum offenen Sternhaufen M21 ist ähnlich wie die zu M20. Doch obwohl sich die beiden im Teleskop die prächtige Himmelslandschaft teilen, gibt es keine offensichtliche Verbindung.

Die Sterne von M21 sind viel älter, etwa 8 Millionen Jahre. M20 und M21 findet man leicht mit kleinen Teleskopen im nebelreichen Sternbild Schütze. Diese gut gestaltete Szene ist ein Komposit. Es entstand mit zwei verschiedenen Teleskopen. Filter führten zu Schmalbanddaten, ein hoch aufgelöstes Bild von M20 wurde mit einem breiteren Bildfeld kombiniert, das bis M21 reicht.

Zur Originalseite

Die N44-Superblase

Im Bild leuchtet eine violette Nebelwolke, in ihrer Mitte ist ein riesiges Loch. Darin sind die Sterne dichter verteilt als außen herum.

Bildcredit und Bildrechte: Gemini Obs., AURA, NSF

Wie entstand dieses gewaltige Loch? Der weite Emissionsnebel N44 liegt in unserer Nachbargalaxie, der Großen Magellanschen Wolke. Er hat ein 250 Lichtjahre großes Loch. Noch ist nicht klar, warum.

Möglich ist, dass Teilchenwinde von massereichen Sternen in der Blase das leuchtende Gas hinaustreiben. Doch es zeigte sich, dass das im Widerspruch zur gemessenen Geschwindigkeit der Sternwinde steht. Eine andere Möglichkeit ist, dass die Hüllen alter Supernovae, die sich ausdehnen, die ungewöhnliche Weltraumhöhle geformt haben. Kürzlich kam ein unerwarteter Hinweis auf Gas, das heiße Röntgenstrahlen abgibt. Es strömt aus der N44-Superblase.

Dieses Bild wurde vom riesigen 8-Meter-Teleskop Gemini-Süd aufgenommen. Das Teleskop steht auf dem Cerro Pachon in Chile. Die Aufnahme entstand in drei spezifischen Farben.

Zur Originalseite

Der prächtige Nebel in Carina

Der Carinanebel ist riesig, er leuchtet rot und orangefarben mitten im Bild. Dahinter sind viele kleine Sterne verteilt.

Bildcredit und Bildrechte: Amit Ashok Kamble

Im Nebel NGC 3372 geschehen einige äußerst seltsame Dinge. Er liegt in einem der hellsten Teile der Milchstraße. Man kennt ihn als den großen Nebel in Carina. Er enthält massereiche Sterne und veränderliche Nebel. Einer davon ist der Schlüssellochnebel NGC 3324. Er liegt in der hellen Struktur rechts neben der Bildmitte. Darin befinden sich mehrere massereiche Sterne, und er hat seine Erscheinung verändert.

Das Bild zeigt den ganzen Carinanebel. Er misst mehr als 300 Lichtjahre. Wir finden ihn etwa 7500 Lichtjahre entfernt im Sternbild Carina. Eta Carinae ist der energiereichste Stern im Nebel. Er war in den 1830er-Jahren einer der hellsten Sterne am ganzen Himmel. Dann verblasste er drastisch. Vielleicht steht Eta Carinae kurz vor einer Explosion als Supernova. Röntgenbilder liefern Hinweise, dass ein großer Teil des Carinanebels eine wahre Fabrik für Supernovae war.

Vortrag: APOD-Herausgeber am 30. Juni in Prag

Zur Originalseite