Am westlichen Schleier

Im querformatigen Bild sind wild strukturierte Nebelfetzen verteilt. Sie leuchten blau und rot, was ihrer Zusammensetzung entspricht (Wasserstoff und Sauerstoff). Im Bild sind der Hexenbesen und Pickerings Dreieck zu sehen.

Bildbearbeitung: Oliver CzernetzDaten: Digitized Sky Survey (POSS-II)

Diese zarten Fasern aus komprimiertem leuchtendem Gas sind im Sternbild Schwan (Cygnus) drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest. Das ist eine sich ausdehnende Wolke, die bei der finalen Explosion eines massereichen Sterns entstand.

Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren. Bei dem heftigen Ereignis entstand eine interstellare Stoßwelle. Sie pflügt durch den Weltraum. Dabei fegt die Stoßwelle interstellare Materie auf und bringt sie zum Leuchten. Die glimmenden Fasern sind eigentlich lange Wellen in einer Hülle, die wir von der Seite sehen. Die Hüllen sind in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün) getrennt.

Der Schleiernebel ist auch als Cygnus-Schleife bekannt. Er ist fast 3 Grad oder 6 Vollmonddurchmesser breit. Das entspricht in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahren. Das breite Bild zeigt die westliche Hälfte des Schleiernebels. Hellere Teile im Schleier gelten als eigene Nebel. Dazu gehören der Hexenbesen (NGC 6960) oben und Pickerings Dreieck (NGC 6979) rechts unten. Anm.: Es ist auch als Williamina Flemings dreieckiges Büschel bekannt.

Zur Originalseite

Die Entkleidung von ESO 137-001

Links oben ist die Spiralgalaxie ESO 137-001, die durch einen Galaxienhaufen rast. Sie zieht eine blaue Spur aus aufgeheiztem, blau leuchtendem Gas hinter sich her, das vom intergalaktischen Medium hinausgedrückt wurde. Oben hinter der Galaxie sind Streifen neu entstandener blauer Sterne.

Bildcredit: NASA, ESA, CXC

Die Spiralgalaxie ESO 137-001 fliegt durch den massereichen Galaxienhaufen Abell 3627. Er ist etwa 220 Millionen Lichtjahre entfernt. Das farbige Kompositbild von Hubble und Chandra zeigt die ferne Galaxie hinter Sternen der Milchstraße im Sternbild Südliches Dreieck.

Die Galaxie rast mit fast 7 Millionen Kilometern pro Stunde dahin. Dabei wird ihr Gas und Staub abgestreift, weil der Staudruck des heißen, dünnen intergalaktischen Mediums im Haufen stärker ist als die Gravitation der Galaxie.

Im abgestreiften Material zeichnen sich kurze blaue Streifen ab, die hinterherziehen. Hubbles Daten im sichtbaren Licht zeigen, dass in den Streifen helle Sternhaufen entstanden sind. Röntgendaten von Chandra zeigen das gewaltige Ausmaß des aufgeheizten, abgestreiften Gases. Es sind die diffusen, dunkleren blauen Spuren, die nach rechts unten verlaufen. Sie sind mehr als 400.000 Lichtjahre lang.

Durch den beträchtlichen Verlust an Staub und Gas wird neue Sternbildung für diese Galaxie schwierig. Rechts neben ESO 137-001 befindet sich eine gelbliche elliptische Galaxie. Sie besitzt zu wenig Gas und Staub, um Sterne zu bilden.

Zur Originalseite

Aussicht in der Nähe eines Schwarzen Lochs

Ein roter Strudel reicht wie ein Trichter in die Tiefe, unten leuchtet eine helle Kugel, von der ein Strahl senkrecht aufsteigt.

Illustrationscredit: April Hobart, CXC

Mitten in einem Strudelbecken aus heißem Gas sitzt wahrscheinlich ein Ungeheuer, das noch nie direkt zu sehen war: ein Schwarzes Loch. Wenn man das helle Licht untersucht, das vom wirbelnden Gas abgestrahlt wird, bietet das häufig nicht nur Hinweise auf ein Schwarzen Lochs, sondern auch auf seine wahrscheinlichen Eigenschaften.

Man fand heraus, dass das Gas um beispielsweise GRO J1655-40 ungewöhnlich flackert. 450 Mal pro Sekunde flackert dieses Gas. Eine frühere Abschätzung der Masse des Objekts im Zentrum ergab sieben Sonnenmassen. Daher kann die Frequenz des schnellen Flackerns durch ein Schwarzes Loch erklärt werden, das sehr schnell rotiert.

Welche physikalischen Mechanismen das Flackern und eine langsamere quasiperiodische Schwingung in Akkretionsscheiben um Schwarze Löcher und Neutronensterne verursacht, wird noch erforscht.

Zur Originalseite

Der lange Strahl des Leuchtturm-Nebels

Der Leuchtturmnebel ist im Bild rechts unten abgebildet, der Supernovaüberrest, von dem er ausgeschleudert wurde, leuchtet links oben. Alle Nebel im Bild sind violett abgebildet.

Röntgen-Bildcredit: NASA / CXC / ISDC / L. Pavan et al.

Der Leuchtturm-Nebel entstand durch den Wind eines Pulsars. Das ist ein schnell rotierender, magnetischer Neutronenstern. Dieser Pulsar rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde durchs interstellare Medium. Pulsar und Windnebel sind als IGR J11014−6103 katalogisiert. Sie sind etwa 23.000 Lichtjahre von uns entfernt und befinden sich im südlichen Sternbild Carina. Dieses Bild des Röntgenobservatoriums Chandra zeigt die beiden rechts unten.

Der Wind fegt geladene Teilchen, die der Pulsar erzeugte, in einen kometenartigen Schweif, der nach links oben zieht. Es verläuft die Gegenrichtung der Bewegung des Pulsars, der sich vom Supernovarest seiner Herkunft fortbewegt. Sowohl der ausreißende Pulsar als auch das sich ausdehnende Geröllfeld vom Supernovaüberrest entstanden durch die Explosion eines massereichen Sterns nach dem Kern-Kollaps. Bei der Supernova-Explosion wurde der Pulsar hinausgeschleudert.

Zur Szenerie kosmischer Extreme gehört auch ein langer, gewundener Strahl. Er ist fast 37 Lichtjahre lang und steht in einem fast rechten Winkel zur Bewegung des Pulsars. Der energiereiche Teilchenstrahl ist der längste, der je bei einem Objekt in unserer Galaxis beobachtet wurde.

Zur Originalseite

Der stille Sagittarius A*

Im Bild sind rote gewundene nebelige Arme verteilt, darin sind gelbe und blaue unscharfe Lichtflecken verteilt. In der Mitte ist ein Quadrat markiert, das rechts oben vergrößert dargestellt ist. Es zeigt eine Nebelstruktur mit einem hellen Zentrum.

Bildcredit: Röntgen – NASA / CXC / Q. Daniel Wang (UMASS) et al., Infrarot – NASA/STScI

Heißes Gas ist schwer zu schlucken. Das gilt anscheinend auch für das extrem massereiche Schwarze Loch im Zentrum unserer Galaxis. Das Schwarze Loch in der Milchstraße ist als die Quelle Sagittarius A* bekannt. Es befindet sich in der Mitte dieses Komposits. Darauf ist Infrarot in roten und gelben Farbtönen dargestellt, Röntgenstrahlung in blauen Farben.

Eine unscharfe Emission umgibt das Schwarze Loch. Sie wurde im Rahmen einer umfangreichen Beobachtungskampagne mit dem Röntgenteleskop Chandra aufgenommen. Der eingefügte Ausschnitt zeigt die Nahaufnahme im Detail, er ist etwa 1/2 Lichtjahr breit. Das galaktische Zentrum ist ungefähr 26.000 Lichtjahre entfernt.

Astronomen* fanden heraus, dass die Röntgenemission von heißem Gas stammt, das aus den Winden massereicher junger Sterne in der Region abgezogen wird. Die Chandra-Daten zeigen, dass höchstens ein Prozent des Gases im Gravitationsbereich des Schwarzen Loches jemals den Ereignishorizont erreicht und genug Hitze und Drehimpuls verliert, um in das Schwarze Loch zu stürzen. Der Rest des Gases entweicht als Ausfluss.

Das Ergebnis erklärt, warum das zentrale Schwarze Loch in der Milchstraße so ruhig ist. Es ist viel blasser, als man im energiereichen Röntgenspektralbereich erwarten würde. Das gilt wahrscheinlich für die meisten extrem massereichen Schwarzen Löcher in Galaxien im nahen Universum.

Zur Originalseite

NGC 2392 von Hubble und Chandra

Das Innere dieses planetarischen Nebels leuchtet rosarot und ist von hellen Schlieren überzogen. Außen herum verläuft ein orangefarbener Strahlenkranz.

Bildcredit: Röntgenlicht: NASA/CXC/IAA-CSIC/N. Ruiz et al.; Optisch: NASA/STScI

1787 entdeckte der Astronom Wilhelm Herschel den Nebel NGC 2392. Vom Boden aus erinnert NGC 2392 an einen Kopf mit einer Kapuze an einem Anorak. Im Jahr 2000 fotografierte das Weltraumteleskop Hubble den Nebel NGC 2392 in sichtbarem Licht. 2007 wurde er vom Röntgenobservatorium Chandra in Röntgenlicht abgebildet.

Dieses Bild wurde aus sichtbarem Licht und Röntgenlicht kombiniert. Es wurde letzte Woche veröffentlicht. Die Röntgenstrahlen werden vom zentralen heißen Gas abgestrahlt. Sie sind rosarot dargestellt. Auf Weltraumbildern zeigt der Nebel Gaswolken, die so komplex sind, dass sie nicht vollständig erklärt werden können.

NGC 2392 ist eindeutig ein planetarischer Nebel. Das oben gezeigte Gas bildete vor nur 10.000 Jahren die äußeren Schichten eines sonnenähnlichen Sterns. Die inneren Fasern entstehen durch den starken Teilchenwind des Zentralsterns. Der äußere Ring enthält ungewöhnliche orangefarbene Fasern, so lang wie ein Lichtjahr. Der Nebel NGC 2392 misst etwa ein Drittel eines Lichtjahres. Er ist etwa 3000 Lichtjahre entfernt und liegt in unserer Galaxis im Sternbild Zwillinge (Gemini).

Zur Originalseite

Keplers Supernovaüberrest im Röntgenlicht

Mitten im Bild strahlt eine blau-türkis-violette Wolke. Sie entstand an der Stelle, wo Kepler vor etwa 400 Jahren eine Supernova beobachtete.

Bildcredit: Röntgenstrahlen: NASA/CXC/NCSU/M. Burkey et al.; sichtbares Licht: DSS

Wie entstand dieses Chaos? Ein Stern explodierte. Dabei entstand dieser ungewöhnlich geformte Nebel. Dieser ist Keplers Supernovaüberrest. Zu welcher Art Sterne gehörte er?

Bei einer Sternexplosion entstand diese energiereiche kosmische Wolke. Das Licht der Explosion war erstmals im Oktober 1604 auf dem Planeten Erde zu sehen. Das war vor etwa vierhundert Jahren. Die Supernova leuchtete am Himmel des frühen 17. Jahrhunderts im Sternbild Schlangenträger. Der helle neue Stern wurde vom Astronomen Johannes Kepler und seinen Zeitgenossen beobachtet. Sie suchten nach einer Erklärung für die himmlische Erscheinung. Damals gab es keine Unterstützung von Teleskopen.

Im frühen 21. Jahrhunderts wird die sich ausdehnende Trümmerwolke weiterhin untersucht. Forschende haben ein neues Verständnis der Sternentwicklung. Außerdem helfen ihnen Weltraumteleskope. Damit beobachten sie Keplers Supernovaüberrest im gesamten Spektrum.

Aktuelle Röntgendaten und Bilder des Kepler-Supernovaüberrestes wurden mit dem Röntgenobservatorium Chandra im Erdorbit aufgenommen. Diese Daten zeigen eine Häufigkeit der Elemente, die für eine Typ-Ia-Supernova sprechen. Somit war der Erzeuger ein weißer Zwergstern. Er explodierte, weil er zu viel Materie von einem begleitenden Roten Riesen aufnahm. Dabei überschritt er die Chandrasekhar-Grenze.

Die Kepler-Supernova ist etwa 13.000 Lichtjahre entfernt. Sie ist jüngste Sternexplosion in der Milchstraße.

Zur Originalseite

Röntgenstrahlen des Supernovaüberrestes SN 1006

Bildfüllend ist ein rotes, rundes Objekt dargestellt. Es erinnert an eine Quaste aus Wolle und ist am Rand von einer schimmernden Oberfläche überzogen.

Bildcredit: NASA/CXC/P. Frank Winkler (Middlebury-College)

Es sieht wie ein Bovist aus. Doch es ist der Überrest einer der sicherlich hellsten Supernovae der Geschichte. 1006 n. Chr. wurde sie als Aufhellung am Nachthimmel über Regionen beschrieben, die nun als China, Ägypten, Irak, Italien, Japan und die Schweiz bekannt sind.

Die sich ausdehnende Trümmerwolke im südlichen Sternbild Wolf (Lupus) stammt von der Explosion. Sie bietet immer noch ein kosmisches Spektakel im gesamten elektromagnetischen Spektrum.

Dieses Bild entstand aus Aufnahmen in drei Farben des Röntgenlichts. Sie wurden mit dem Röntgenobservatorium Chandra im Orbit aufgenommen. Die Trümmerwolke ist als Supernovaüberrest SN 1006 bekannt. Sie ist etwa 60 Lichtjahre groß und besteht aus den Überresten eines Weißen Zwergsterns.

Der kompakte weiße Zwerg war Teil eines Doppelsternsystems. Er sammelte nach und nach Materie seines Begleitsterns an. Der Materiezuwachs löste schließlich eine thermonukleare Explosion aus, die den Zwergstern zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit fand diese Explosion tatsächlich 7000 Jahre vor der Ankunft des Lichts 1006 bei der Erde statt. Stoßwellen im Überrest beschleunigen Teilchen auf extreme Energien. Sie gelten als Quelle der rätselhaften kosmischen Strahlen.

Zur Originalseite