Die Galaxie, der Strahl und das Schwarze Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, Event Horizon Telescope Collaboration

Beschreibung: Die helle elliptische Galaxie Messier 87 (M87) enthält das sehr massereiche Schwarze Loch auf dem historischen ersten Bild eines Schwarzen Lochs, das vom Event Horizon Telescope auf dem Planeten Erde aufgenommen wurde. M87 ist eine Riesin im etwa 55 Millionen Lichtjahre entfernten Virgo-Galaxienhaufen. Die große Galaxie wurde auf diesem Infrarotbild des Weltraumteleskops Spitzer in blauen Farbtönen gerendert.

M87 erscheint fast strukturlos und wolkenartig, doch das Spitzer-Bild zeigt Details der relativistischen Jets, die aus der Zentralregion der Galaxie schießen. Die Strahlen im Einschub rechts oben sind Tausende Lichtjahre lang. Der hellere Strahl rechts strömt in unsere Richtung und liegt in der Nähe unserer Sichtlinie. Gegenüber erzeugt ein unsichtbarer fortströmender Strahl eine Erschütterung, welche einen blassen Materiebogen beleuchtet.

Der Einschub rechts unten zeigt das historische Bild des Schwarzen Lochs, das sich im Zentrum der riesigen Galaxie und der relativistischen Strahlen befindet. Das sehr massereiche Schwarze Loch ist im Spitzer-Bild völlig unaufgelöst, es ist von einfallender Materie umgeben und liefert die gewaltige Energie, welche die relativistischen Strahlen aus dem Zentrum der aktiven Galaxie M87 treibt.

Zur Originalseite

Simulation: Zwei Schwarze Löcher verschmelzen


Simulationscredit: Simulating eXtreme Spacetimes Project

Beschreibung: Lehnen Sie sich zurück und beobachten Sie, wie zwei Schwarze Löcher verschmelzen. Dieses Simulationsvideo entstand nach der ersten direkten Entdeckung von Gravitationswellen im Jahr 2015. Es läuft in Zeitlupe und würde in Echtzeit ungefähr eine Drittelsekunde dauern.

Die Schwarzen Löcher posieren auf einer kosmischen Bühne vor Sternen, Gas und Staub. Ihre extreme Gravitation bricht das Licht von dahinter zu Einsteinringen, während sie sich einander auf spiralförmigen Bahnen nähern und schließlich verschmelzen. Durch die an sich unsichtbaren Gravitationswellen, die beim blitzartigen Verschmelzen der massereichen Objekte entstehen, plätschert und schwappt das sichtbare Bild innerhalb und außerhalb der Einsteinringe, sogar noch nachdem die Schwarzen Löcher verschmolzen sind.

Die von LIGO entdeckten Gravitationswellen werden als GW150914 bezeichnet, sie entsprechen der Verschmelzung Schwarzer Löcher mit 36 und 31 Sonnenmassen in einer Entfernung von 1,3 Milliarden Lichtjahren. Das finale einzelne Schwarze Loch besitzt 63 Sonnenmassen, wobei die übrigen 3 Sonnenmassen in Energie umgewandelt wurden, und zwar in Form von Gravitationswellen. Seit damals meldeten die LIGO– und VIRGO-Gravitationswellen-Observatorien mehrere weitere Entdeckungen verschmelzender massereicher Systeme, und letzte Woche das zeigte das Event Horizon Telescope das erste horizontgroße Bild eines Schwarzen Loches.

Zur Originalseite

Erstes Bild vom Horizont eines Schwarzen Lochs

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Event Horizon Telescope Collaboration

Beschreibung: Wie sieht ein Schwarzes Loch aus? Um das herauszufinden, koordinierten Radioteleskope auf der ganzen Welt Beobachtungen von Schwarzen Löchern mit den größten bekannten Ereignishorizonten am Himmel. Zwar sind Schwarze Löcher einfach schwarz, doch es ist bekannt, dass diese ungeheuren Attraktoren von leuchtendem Gas umgeben sind. Das erste Bild wurde gestern veröffentlicht und löst den Bereich um das Schwarze Loch im Zentrum der Galaxie M87 in einer geringeren Größenordnung auf, als man für seinen Ereignishorizont erwartet hatte.

Die dunkle zentrale Region im Bild ist nicht der Ereignishorizont, sondern eher der Schatten des Schwarzen Lochs – der zentrale Bereich strahlenden Gases, der durch die Gravitation des Schwarzen Lochs abgedunkelt wird. Größe und Form des Schattens werden von hellem Gas in der Nähe des Ereignishorizonts, starke Ablenkung durch Gravitationslinseneffekte sowie die Rotation des Schwarzen Lochs bestimmt.

Durch das Auflösen dieses Schwarzen Lochs lieferte das Event Horizon Telescope (ETH) neue Hinweise, dass Einsteins Gravitationstheorie sogar in extremen Bereichen funktioniert, und lieferte deutliche Indizien, dass M87 ein zentrales rotierendes Schwarzes Loch mit etwa 6 Milliarden Sonnenmassen besitzt. Das EHT ist noch nicht fertig – künftige Beobachtungen sollen sogar eine noch höhere Auflösung liefern, außerdem eine verbesserte Aufzeichnung der Schwankungen sowie die Erforschung der unmittelbaren Umgebung des Schwarzen Lochs im Zentrum unserer Milchstraße.

Zur Originalseite

Massereiche Schwarze Löcher auf einer Spiralbahn


Videocredit: NASA’s Goddard Space Flight Center; Musik: In der Halle des Bergkönigs von Edvard Grieg

Beschreibung: Leuchten Schwarze Löcher, wenn sie kollidieren? Wenn sie verschmelzen, strahlen umeinander kreisende Schwarze Löcher mit Sicherheit eine Menge ungewöhnlicher Gravitationswellen ab. Strahlen sie aber schon viel früher Licht ab, wenn sie von Gas umgeben sind?

Um das herauszufinden, entwickelten Astrophysiker eine komplexe Computersimulation. Die Simulation und dieses Ergebnisvideo zeigen sehr detailreich zwei sehr massereiche Schwarze Löcher zusammen mit dem Einfluss von Einsteins allgemeiner Relativitätstheorie auf das umgebende Gas und Licht.

Das Video zeigt das System zuerst von oben, danach von der Seite, dabei sind ungewöhnliche Gravitationslinsenverzerrungen augenfälliger. Rechnerische Ergebnisse lassen vermuten, dass Gravitations- und Magnetkräfte das Gas aufheizen, sodass es sehr energiereiches Licht vom Ultraviolett– bis zum Röntgenbereich abstrahlt. Solche Lichtemissionen ermöglichen der Menschheit vielleicht, Paare sehr massereicher Schwarzer Löcher lange vor ihrem Verschmelzen auf spiralförmigen Bahnen aufzuspüren und zu untersuchen.

Offene Wissenschaft: Stöbern Sie in 1800+ Codes in der Astrophysics Source Code Library

Zur Originalseite

M15: Dichter Kugelsternhaufen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Bernhard Hubl (CEDIC)

Beschreibung: Messier 15 ist ein unermessliches Gewimmel von mehr als 100.000 Sternen. Er ist ein 13 Milliarden Jahre altes Relikt der frühen Entstehungsjahre unserer Galaxis und einer von ungefähr 170 Kugelsternhaufen, die immer noch im Halo unserer Milchstraße wandern.

M15 liegt in der Mitte in dieser scharfen Teleskopansicht, er ist ungefähr 35.000 Lichtjahre entfernt und steht im Sternbild Pegasus, weit hinter den gezackten Vordergrundsternen. Sein Durchmesser beträgt zirka 200 Lichtjahre. Doch mehr als die Hälfte seiner Sterne sind in einem Raum von 10 Lichtjahre gedrängt, somit herrscht dort eine der höchsten Sterndichten, die wir kennen. Mit Hubble durchgeführte Messungen der zunehmenden Geschwindigkeiten der Zentralsterne von M15 sind ein Hinweis, dass ein massereiches Schwarzes Loch im Zentrum des dichten Kugelsternhaufens M15 haust.

Zur Originalseite

Trapezium: Im Zentrum Orions

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Daten: Hubble Legacy Archive, Bearbeitung: Robert Gendler

Beschreibung: Nahe der Mitte dieses scharfen kosmischen Porträts, im Zentrum des Orionnebels, befinden sich vier heiße, massereiche Sterne, die als Trapez bekannt sind. Sie sind in einem Gebiet mit einem Radius von etwa 1,5 Lichtjahren versammelt und dominieren den Kern des dichten Orionnebel-Sternhaufens. Ultraviolette ionisierende Strahlung der Trapezsterne, die hauptsächlich vom hellsten Stern Theta-1 Orionis C stammt, liefert die Energie für das gesamte sichtbare Leuchten der komplexen Sternbildungsregion.

Der Orionnebelhaufen ist etwa drei Millionen Jahre alt und war in seinen jüngeren Jahren sogar noch kompakter. Eine aktuelle dynamische Analyse zeigt, dass unkontrollierte Sternkollisionen in früherer Zeit ein Schwarzes Loch mit mehr als 100 Sonnenmassen gebildet haben könnten. Die Anwesenheit eines Schwarzen Lochs im Haufen könnte die beobachteten hohen Geschwindigkeiten der Trapezsterne erklären. Da der Orionnebel etwa 1500 Lichtjahre von uns entfernt ist, wäre es vom Planeten Erde aus gesehen das nächstgelegene Schwarze Loch.

Zur Originalseite

Reise zum Zentrum der Galaxis


Videocredit: ESO/MPE/Nick Risinger (skysurvey.org)/VISTA/J. Emerson/Digitized Sky Survey 2

Beschreibung: Welche Wunder liegen im Zentrum unserer Galaxis? Im Science-Fiction-Klassiker „Reise zum Mittelpunkt der Erde“ von Jules Verne finden Professor Liedenbrock und seine Begleiter viele seltsame, aufregende Wunder.

Astronomen kennen bereits einige seltsame Objekte im Zentrum unserer Galaxis, darunter gewaltige kosmische Staubwolken, helle Sternhaufen, wirbelnde Ringe aus Gas und sogar ein extrem massereiches Schwarzes Loch. Ein Großteil des galaktischen Zentrums ist im sichtbaren Licht durch dazwischen liegenden Staub und Gas vor unserer Sicht verborgen, doch man kann in anderen Wellenlängen der elektromagnetischen Strahlung forschen.

Dieses Video ist eigentlich eine digitale Sondierung des Zentrums der Milchstraße, die mit Bildern der Digitisierten Himmelsdurchmusterung im sichtbaren Licht beginnt. Im weiteren Verlauf des Films verschiebt sich das gezeigte Licht zum Staub durchdringenden Infrarot und zeigt Gaswolken, von denen man 2013 herausfand, dass sie in das zentrale Schwarze Loch stürzen.

Im Mai 2018 zeigten Beobachtungen eines Sterns, der nahe am zentralen Schwarzen Loch in der Milchstraße vorbeizog, zum allerersten Mal eine Gravitationsrotverschiebung im Licht des Sterns – was laut Einsteins allgemeiner Relativitätstheorie zu erwarten war.

Höhepunkte: Aktuelle totale Mondfinsternis

Zur Originalseite

Neutrino trifft zeitgleich mit fernem Blazarstrahl ein

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Beschreibung: Mit Geräten, die unter dem Südpol der Erde tief im Eis eingefroren sind, hat die Menschheit anscheinend ein Neutrino aus dem fernen Universum entdeckt. Falls das bestätigt wird, markiert es den ersten eindeutigen Nachweis kosmologisch weit entfernter Neutrinos und den Beginn eines beobachteten Zusammenhangs zwischen energiereichen Neutrinos und kosmischer Strahlung, die durch mächtige Ströme aus aufflackernden Quasaren (Blazare) erzeugt werden.

Nachdem der antarktische IceCube-Detektor im September 2017 ein energiereiches Neutrino gemessen hatte, begannen viele der weltweit größten Observatorien mit der Suche nach seinem Gegenstück im sichtbaren Licht. Und sie fanden es. Ein solches Gegenstück wurde unter anderem vom Weltraumobservatorium Fermi der NASA ermittelt, welches herausfand, dass der Gammastrahlenblazar TXS 0506+056 in der richtigen Richtung stand und die Gammastrahlen eines Blitzes fast exakt zeitgleich mit dem Neutrino eintrafen. Obwohl diese und weitere Übereinstimmungen von Position und Zeit statistisch stark sind, warten Astronomen weitere ähnliche Zusammenhänge zwischen Neutrinos und Blazar-Licht, um ganz sicher zu gehen.

Diese künstlerische Darstellung zeigt einen Teilchenstrahl, der von einem Schwarzen Loch im Zentrum eines Blazars ausströmt.

Zur Originalseite

Centaurus A

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: CEDIC Team am Chilescope, BearbeitungBernhard Hubl

Beschreibung: Centaurus A ist nur 11 Millionen Lichtjahre entfernt und somit vom Planeten Erde aus gesehen die nächstgelegene aktive Galaxie. Diese scharfe Teleskopansicht zeigt die ungewöhnliche elliptische Galaxie, diese ist auch als NGC 5128 bekannt und umfasst mehr als 60.000 Lichtjahre.

Centaurus A ist offensichtlich das Ergebnis einer Kollision zweier normaler Galaxien, was zu einem fantastischen Durcheinander aus Sternhaufen und imposanten Staubbahnen führte. Nahe dem Galaxienzentrum werden ständig übrig gebliebene kosmische Trümmer von einem zentralen Schwarzen Loch mit Milliarden Sonnenmassen vernichtet. Wie in anderen aktiven Galaxien erzeugt dieser Prozess wahrscheinlich die Radio-, Röntgen- und Gammastrahlenenergie, die von Centaurus A abgestrahlt wird.

Zur Originalseite

Viele Singularitäten im Galaktischen Zentrum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC / Columbia Univ./ C. Hailey et al.

Beschreibung: Eine kürzlich durchgeführte informelle Studie ergab, dass Astronomen noch keinen guten Sammelbegriff für Gruppen Schwarzer Löcher haben. Doch sie brauchen einen.

Die roten Kreise auf diesem Bild des Röntgenobservatoriums Chandra kennzeichnen eine Gruppe mit einem Dutzend Schwarzer Löcher in Doppelsternsystemen. Sie besitzen etwa 5 bis 30 Sonnenmassen und schwärmen in einem Umkreis von ungefähr 3 Lichtjahre um das Zentrum unserer Galaxis mit einem sehr massereiche Schwarzen Loch, das als Sagittarius A* (Sgr A*) bezeichnet wird. Gelbe Kreise kennzeichnen Röntgenquellen, die wahrscheinlich weniger massereiche Neutronensterne oder weiße Zwergsterne in Doppelsternsystemen sind.

Einzelne Schwarze Löcher wären unsichtbar, doch in Doppelsternsystemen sammeln sie Materie von ihrem normalen Begleitstern und erzeugen Röntgenstrahlung. In der Entfernung des galaktischen Zentrums kann Chandra nur die helleren dieser Doppelsysteme mit Schwarzen Löchern als punktförmige Röntgenquellen erkennen – ein Hinweis, dass es dort Hunderte schwächerer Doppelsysteme mit Schwarzen Löchern geben müsste, die noch nicht entdeckt wurden.

Zur Originalseite

Fasern der aktiven Galaxie NGC 1275

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Legacy Archive, ESA, NASA; Bearbeitung und Bildrechte: Domingo Pestana

Beschreibung: Was hält die Fasern an dieser Galaxie?

Die Fasern bleiben in NGC 1275 bestehen, obwohl der Tumult galaktischer Kollisionen sie zerstört haben sollten. Die aktive Galaxie NGC 1275 ist das zentrale markante Mitglied des großen, relativ nahen Perseus-Galaxienhaufens. Die aktive Galaxie sieht in sichtbaren Wellenlängen wild aus, sie ist auch eine gewaltige Quelle an Röntgen– und Radioemissionen.

NGC 1275 sammelt Materie, indem ganze Galaxien hineinfallen und letztlich ein sehr massereiches Schwarzes Loch im Kern der Galaxie füttern. Dieses Kompositbild, das aus Archivdaten des Weltraumteleskops Hubble nachgebaut wurde, betont die entstandenen galaktischen Trümmer und Fasern aus leuchtendem Gas, manche sind bis zu 20.000 Lichtjahre lang.

Beobachtungen lassen vermuten, dass die Strukturen, die durch die Aktivität des Schwarzen Lochs vom Galaxienzentrum ausgestoßen werden, durch Magnetfelder zusammengehalten werden. NGC 1275, auch bekannt als Perseus A, ist größer als 100.000 Lichtjahre und etwa 230 Millionen Lichtjahre entfernt.

Zur Originalseite