Straße zum galaktischen Zentrum

Das Kompositbild zeigt im Vordergrund das Monument Valley in Utah in den USA. Im Hintergrund ist die Ebene der Milchstraße mit dem Zentrum der Galaxis.

Bildcredit und Bildrechte: Michael Abramyan

Geht der Weg zum Zentrum der Galaxis durch das amerikanische Monument Valley? Das muss nicht so sein. Sollte aber der Weg dort entlang führen: macht ein Foto! In diesem Fall ist es die US-Bundesstraße U.S. Highway 163. Ikonische Hügel im Reservat der Navajo (Navajo Nation Reservation) säumen den Horizont. Das Band der Milchstraße reicht vom Himmel herab. Es wirkt wie eine Verlängerung der Straße auf der Erde.

Staubwolken bilden dunkle Filamente in der Milchstraße und somit einen Kontrast zu den Milliarden heller Sternen und bunt leuchtender Gaswolken. Dazu gehören der Lagunennebel und der Trifidnebel.

Dieses Bild ist ein Komposit mehrerer Aufnahmen mit derselben Kamera am selben Ort: dem Forest Gump Point im US-Bundesstaat Utah. Der Vordergrund wurde kurz nach Sonnenuntergang aufgenommen. Es war Anfang September 2021 zur „blauen Stunde„. Der Hintergrund ist ein Mosaik aus vier Aufnahmen. Sie entstanden einige Stunden später.

Zur Originalseite

Hubble zeigt einen hufeisenförmigen Einstein-Ring

Um eine elliptische gelbe Galaxie biegt sich ein blauer Ring. Es ist das verzerrte Abbild einer Galaxie, die viel weiter entfernt ist. Die gelbe Galaxie im Vordergrund wirkt dabei wie eine Linse, die das Licht bricht.

Bildcredit: ESA/Hubble und NASA

Was ist groß und blau und kann sich um eine ganze Galaxie biegen? Die Fata Morgana einer Gravitationslinse. Im Vordergrund liegt eine massereiche elliptische Galaxie (leuchtend rote Galaxie: LRG). Sie verzerrt mit ihrer Gravitation das Licht der blauen Galaxie, die viel weiter entfernt ist, zu einem leuchtenden Bogen.

Normalerweise führt so eine Verbiegung des Lichtwegs zu zwei getrennten Bildern der weiter entfernten Galaxie. Doch in diesem Fall ist die räumliche Anordnung der Linse so genau, dass die Galaxie im Hintergrund zu einem Hufeisen verzerrt wird. Die Form ist sogar fast ein geschlossener Einsteinring.

LRG 3-757 wurde zwar schon 2007 in den Daten der Sloan Digital Sky Survey (SDSS) entdeckt. Doch dieses Bild wurde erst bei einer nachfolgenden Beobachtung mit dem Weltraumteleskop Hubble mit der Wide Field Camera 3 aufgenommen.

Die zentrale Galaxie, welche die Linse bildet, wurde kürzlich erneut untersucht. Dabei zeigte sich, dass sie ein einzelnes Schwarzes Loch enthält. Es soll 36 Milliarden Sonnenmassen besitzen.

Zur Originalseite

All Hallows’ Eve und der Geisterkopfnebel

Siehe Beschreibung. XXX Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Mohammad Heydari-Malayeri (Observatoire de Paris) et al.,

Der Ursprung von Halloween ist antik und astronomisch. Seit dem fünften Jahrhundert v. Chr. wird Halloween als Tag des Quartalswechsels gefeiert, also das Ende des Herbstquartals und der Anfang des Winterquartals. Dieser Tag liegt etwa in der Mitte zwischen dem Äquinoktium (equal day / equal night) und der Sonnenwende liegt. Im Altertum wussten die naturverbundeneren Menschen, dass am Äquinoktium der lichte Tag und die Nacht gleich lang sind, während an Sonnenwenden die Nacht maximale (Winter) bzw. minimale (Sommer) Dauer hat.

Obwohl Halloween später diese Woche stattfindet (beim Monatswechsel), folgt der wahre Quartalswechseltag im (römischen) modernen Kalender erst eine gute Woche später. Ein anderer Quartalswechseltag ist Mariä Lichtmess (in Amerika „Groundhog Day„, Murmeltiertag, genannt). Die heutigen Halloween-Bräuche von schauriger Symbolik haben ihre historischen Wurzeln darin, dass man die Geister der Toten abschrecken wollte.

Passend zu diesem antiken Feiertag könnte der Anblick des Ghost Head Nebula (Geisterkopfnebels) sein, wie er vom Hubble-Weltraumteleskop (HST) aufgenommen wurde.

Wie auch das Symbol eines fiktiven Geistes ist NGC 2080 tatsächlich ein Sternentstehungsgebiet in der Großen Magellanschen Wolke. Er befindet sich also in einer Satellitengalaxie unserer Heimatgalaxie, der Milchstraße. Der Ghost Head Nebula (NGC 2080) durchmisst 50 Lichtjahre und ist hier in repräsentativen Farben dargestellt.

Zur Originalseite

Komet Tschurjumow-Gerassimenko bildet Schweife

Siehe Beschreibung. XXX Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: ESA, Rosetta, NAVCAM

Woher kommt der Kometenschweif?

Normalerweise gibt es auf den Kernen von Kometen keine offensichtlichen Punkte (Poren), aus denen die Jets kommen, die den Kometenschweif bilden. Eines der besten Bilder von Jets aus einem Kometen zeigt dieses Bild. Es wurde 2015 von der robotischen ESA-Sonde Rosetta gewonnen, die um den Kometen 67P/Churyumov-Gerasimenko (Comet CG) flog; zwischen 2014 und 2016 befand sie sich im Orbit.

Das Bild zeigt zahlreiche Wolken aus Staub und Gas, die aus dem Kern von Comet CG ausdünsten, während er sich der Sonne näherte und aufheizte. Der Komet hat zwei auffällige Teile (Lappen). Der größere ist etwa 4 Kilometer lang. Er ist mit dem kleineren, 2.5 Kilometer langen, durch einen engen Hals verbunden.

Analysen haben ergeben, dass die Ausdünstung direkt aus der Kometenoberfläche kommen muss. Sie wird zu Strahlen aus Gas, Staub und Eis gebündelt, die wir aus der Oberfläche austreten sehen. Comet CG (auch Komet 67P genannt) verliert durch seine Jets etwa ein Meter an Oberflächentiefe pro Umlauf um die Sonne, also ein Meter in 6.44 Jahren. Bei dieser Rate an Materialverlust wird er binnen einiger tausend Jahr komplett verschwinden.

Die RosettaMission endete 2016 mit einem kontrollierten Einsturz des Instruments auf der Oberfläche von Comet CG.

Zur Originalseite

Alles Wasser auf Europa

Links neben der Erde ist der Jupitermond Europa. Auf beiden Himmelskörpern ist eine blaue Perle. Sie zeigt die Menge an Wasser, die auf dem jeweiligen Körper vorhanden ist.

Bildcredit und Bildrechte: Kevin Hand (JPL/Caltech), Jack Cook (Meeresforschungsinstitut Woods Hole) und Howard Perlman (USGS)

Wie viel von Jupiters Mond Europa ist Wasser? Niemand weiß das sicher, aber dass es eine ganze Menge sein muss, können wir sagen. Das bestätigen die Daten der Raumsonde Galileo, die 1995 bis 2003 bei den Erkundungsflügen durchs Jupiter-System gewonnen wurden. Europa hat einen tiefen Ozean aus flüssigem Wasser unter der vereisten Oberfläche, der den Mond umspannt.

Der Ozean unter der Oberfläche plus die Eisschichten könnten zusammen im Schnitt über 100 Kilometer tief reichen. Nehmen wir die größtmögliche Abschätzung von 100 Kilometern Tiefee an. Dann hätte eine Kugel aus dem Wasser des Mondes Europa einen Radius von über 800 Kilometern.

Diese Abbildung vergleicht die hypothetischen Wasserkugeln der beiden Himmelskörper im selben Maßstab. Links sind Europa und das Wasser darauf, rechts ist die Wassermenge des Planeten Erde dargestellt.

Das Volumen des Ozeans unter der Oberfläche von Europa ist vielleicht sogar größer als das des Wassers auf der Erde. Daher ist er ein verlockendes Ziel für die Suche nach Leben im Sonnensystem außerhalb der Erde. Die robotisch NASA-Raumsonde Europa Clipper startete letztes Jahr zu diesem Zweck.

Zur Originalseite

Leopardenflecken auf Marsfelsen

Die hellen Flecken mit dunklen Rändern auf dem rötlichen Marsgestein erinnern an Flecken, die man auf irdischen Felsen sieht.

Bildcredit: NASA, JPL-Caltech, MSSS, Rover Perseverance

Woher kommen diese ungewöhnlichen Flecken? Es sind helle Flecken auf Marsfelsen. Jeder ist von dunklen Rändern umgeben. Sie wurden letztes Jahr von dem NASARover Perseverance entdeckt, der derzeit auf dem Mars herumfährt. Wegen ihrer Ähnlichkeit mit der Fellzeichnung irdischer Raubkatzen nennt man sie Leopardflecken. Diese interessanten Muster werden derzeit noch untersucht, um ihre mögliche Entstehung durch früheres Leben auf dem Mars zu erkunden.

Diese Flecken sind nur wenige Millimeter groß. Sie wurden auf einem größeren Felsen namens Cheyava Falls entdeckt. Es gibt eine aufregende, aber unbewiesene Spekulation. Sie vermutet, dass diese Flecken vor langer Zeit durch Mikroben entstanden sind. Die Mikroben könnten durch chemische Reaktionen Energie erzeugen, die den Fels von Rot nach Weiß verfärbte. Dabei hinterließ ihre Biosignatur den dunklen Ring. So zumindest entstehen ähnliche Flecken auf irdischen Felsen.

Es gibt zwar auch andere Erklärungen, die nicht biologisch sind. Doch die Spekulationen mit einem möglichen biologischen Ursprung des Musters sind viel aufregender.

Zur Originalseite

Der rotierende Pulsar im Krebsnebel

Der Krebspulsar ist von weißen, wirbelnden Wolken umgeben. Außen herum sind violette Wolken angeordnet. Das Bild wurde eingefärbt.

Bildcredit: NASA: Röntgen: Chandra (CXC), optisch: Hubble (STScI), Infrarot: Spitzer (JPL-Caltech)

Im Zentrum des Krebsnebels liegt ein magnetischer Neutronenstern von der Größe einer Stadt. Er rotiert 30 Mal pro Sekunde. Das Objekt ist auch als Krebspulsar bekannt. Es ist der helle Fleck im Gaswirbel, der sich im Nebelzentrum befindet. Das spektakuläre Bild ist zwölf Lichtjahre breit. Es zeigt leuchtendes Gas, Höhlungen und wirbelnde Filamente mitten im Krebsnebel.

Das Bild ist aus Aufnahmen in mehreren Wellenlängen zusammengesetzt: Das Weltraumteleskop Hubble fotografiert im sichtbaren Licht (lila), das Röntgenteleskop Chandra im Röntgenbereich (blau) und das Weltraumteleskop Spitzer im infraroten Wellenlängenbereich (rot).

Wie ein kosmischer Dynamo liefert der Krebspulsar die Energie für die Emissionen des Nebels. Er jagt Stoßwellen durch das umgebende Material und beschleunigt Elektronen auf spiralförmigen Bahnen.

Der rotierende Pulsar hat mehr Masse als die Sonne und der Dichte eines Atomkerns. Er ist der kollabierte Kern eines massereichen Sterns, der explodierte. Die äußeren Teile des Krebsnebels sind die Überreste des Gases, aus dem der Stern bestand. Sie dehnen sich aus. Die Supernova-Explosion wurde auf dem Planeten Erde im Jahr 1054 von Menschen bezeugt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Asperitas-Wolken über Neuseeland

Die Wolken über dem Nadelwald wirken bedrohlich. Sie sind orangefarben und stark gewellt. Doch sie sind mit Sicherheit harmlos.

Bildcredit und Bildrechte: Witta Priester

Was ist das für ein Wolkentyp? Ihr Ursprung ist derzeit unbekannt. Doch die ungewöhnlichen atmosphärischen Strukturen, so bedrohlich sie auch wirken mögen, scheinen sie keine Vorboten meteorologischer Katastrophen zu sein. Erst letztes Jahr wurden sie als eigener Wolkentyp erfasst.

Asperitas-Wolken (lateinisch für „unebene Wolken“) können atemberaubend wirken. Sie treten überraschend auf und sind nur wenig erforscht. Meist sind niedrige Wolkendecken an der Unterseite flach. Doch Asperitas-Wolken haben unten eine markante senkrechte Struktur.

Man vermutet, dass Asperitas-Wolken mit den Lenticularis (linsenförmige Wolken) verwandt sind. Diese entstehen in der Nähe von Bergen. Alternativ könnten sie Mammatuswolken ähnlich sein. Diese gehen mit Gewitterstürmen einher. Vielleicht ähneln sie aber auch Föhnwolken. Sie entstehen beim trockenen Fallwind an Berghängen. Ein solcher föhnartiger Wind strömt auf Neuseelands Süd-Insel zur Ostküste. Man nennt ihn Canterbury Northwester.

Dieses Bild entstand 2005 über Hanmer Springs im neuseeländischen Canterbury. Es zeigt viele Details, weil das Sonnenlicht die wellenartigen Unterseiten der Wolken von der Seite beleuchtet.

Zur Originalseite