Jupiter und der grosse Rote Fleck

Jupiter füllt das ganze Bild. Rechts unten liegt der Große Rote Fleck unter den beiden markanten ockerfarbenen Gürteln. Braune Zonen wechseln sich mit hellen Bändern ab. Auch einige große weiße Ovale sind im Bild. Der größte Wirbelsturm ist immer noch der Rote Fleck, auch wenn er im Vergleich zu älteren Aufnahmen hier viel kleiner ist.

Bildcredit und Bildrechte: Christopher Go

Jupiter erreicht seine Opposition 2026 genau heute, am 10. Januar. Damit steht der schwerste Planet des Sonnensystems genau gegenüber der Sonne und er erreicht etwa seine größte Helligkeit für Beobachtende auf der Erde.

Dieser scharfe Schnappschuss wurde vor erst 3 Tagen mit einem Teleskop aufgenommen. Er zeigt viele Details des Gasriesen, z. B. die wirbelnden Oberflächen seiner Wolken. Sie bilden helle Streifen und dunkle Gürtel um den schnell rotierenden äußeren Planeten.

Jupiter ist für seinen lange bestehenden Antizyklon berühmt. Man nennt ihn den Großen Roten Fleck. Er befindet sich rechts unten südlich des Äquators. Auch zwei weitere kleinere rote Flecken sind sichtbar: Einer ist oben bei der nördlichen Zone und einer nah an Jupiters Südpol.

Jupiters Großer Roter Fleck wird bekanntlich allmählich kleiner. Trotzdem ist er immer noch ungefähr so groß wie die ganze Erde.

Zur Originalseite

Eis-Halos bei Mond- und Sonnenlicht

Links ist ein Mond, der nachts von Halo-Erscheinungen umgeben ist, rechts geht die Sonne auf, ebenfalls von Halos umgeben. Die Bilder entstanden in Chamonix-Mont-Blanc. Für die Entstehung der Halos gibt es geometrische Regeln, die von den Eiskristallen in der Luft festgelegt werden.

Bildcredit und Bildrechte: Antonella Cicala

Sowohl der Mond als auch die Sonne können wunderschöne Eishalos am Himmel des Planeten Erde bilden. Die zwei hellsten Leuchtfeuer am Himmel sind auf diesen Fotos von je einer Gruppe von Haloerscheinungen umgeben. Sie leuchten über Chamonix-Mont-Blanc in Frankreich. Die beiden Aufnahmen entstanden Ende Dezember 2025 in einer Nacht (links) und am darauffolgenden Tag.

Dass die Halos im Mond- und Sonnenlicht so ähnlich aussehen, liegt daran, dass sie auf ähnliche Weise entstehen. In beiden Fällen spielt Sonnenlicht mit kleinen, flachen sechseckigen Eiskristallen zusammen. Wenn Eiskristalle in der kalten Atmosphäre des Berg-Ressorts flattern, reflektieren und brechen sie das Licht.

Sonne und Mond sind von einem recht häufigen, kreisförmigen 22°-Halo umgeben. An den Schnittstellen des 22°-Halorings mit den angedeuteten Horizontalkreisen durch Mond und Sonne leuchten helle Flecken. Sie manchmal sogar farbig. Man nennt sie auch Nebenmonde und Nebensonnen.

Zur Originalseite

NGC 1898: Kugelsternhaufen in der Großen Magellanschen Wolke

Ein bunter Kugelsternhaufen mit vielen roten und blauen Sternen füllt das Bild. In der Mitte ist ein helles Zentrum, doch auch der Hof ist voller Sterne.

Bildcredit: ESA / Hubble und NASA

Juwelen scheinen nicht hell – nur Sterne. Fast jeder Fleck in diesem Schmuckkästchen auf einem Foto des Weltraumteleskops Hubble ist ein Stern. Es gibt Sterne, die röter sind als unsere Sonne und andere, die blauer sind – doch sie alle sind weiter entfernt. Das Licht braucht 8 Minuten von der Sonne, um die Erde zu erreichen. NGC 1898 ist so weit weg, dass sein Licht etwa 160.000 Jahre benötigt, um hier anzukommen.

Der große Ball aus Sternen wird NGC 1898 genannt und ist ein Kugelsternhaufen. Er befindet sich im Zentralbalken der Großen Magellanschen Wolke (GMW), einer Satellitengalaxie unserer Milchstraße.

Das mehrfarbige Bild entstand aus vielen Bändern von Infrarot bis Ultraviolett. Es wurde aufgenommen, um zu entscheiden, ob alle Sterne von NGC 1898 gleichzeitig entstanden oder unterschiedlich alt sind. Nun häufen sich die Hinweise, dass in den meisten Kugelsternhaufen die Sterne in Wellen entstehen. Insbesondere die Sterne von NGC 1898 entstanden alle kurz nach einer Annäherung der Kleinen Magellanschen Wolke (KMW) an unsere Milchstraße vor langer Zeit.

Weltraumteleskope – aktuell: Wohin blicken Hubble und Webb gerade?

Zur Originalseite

Sonnenwende auf der rotierenden Erde

Videocredit: Meteosat 9, NASA, Earth Observatory, Robert Simmon

Kann man von der Neigung der Erde ableiten, dass heute Sonnenwende ist? – Ja. Zur Sonnenwende ist der Terminator der Erde – das ist die Linie, an der sich Tag und Nacht treffen – am stärksten geneigt. Dieses Zeitraffervideo zeigt dies anhand eines vollen Jahreszyklus des Planeten Erde in zwölf Sekunden. Der Satellit Meteosat 9 befindet sich in einem geosynchronen Orbit. Er nahm jeden Tag zur gleichen Ortszeit (das ist die Zeit nach Sonnenstand) ein Infrarotbild der Erde auf.

Das Video beginnt mit der Tagundnachtgleiche im September 2010. Der Terminator bildet eine senkrechte Linie: Tag und Nacht sind gleich lang (was die Zeit betrifft – beide bedecken visuell gleiche Anteile der Erdkugel).

Während die Erde ihren Weg um die Sonne fortsetzt, sieht man, wie sich der Terminator neigt, sodass pro Tag weniger Licht auf die Nordhalbkugel fällt. Das führt im Norden zum Winter. Wenn die Neigung am größten ist, findet im Norden die Wintersonnenwende statt. Im Süden ist Sommersonnenwende.

Dann schreitet das Jahr voran. Im März 2011 ist die nächste Tagundnachtgleiche, das ist etwa in der Mitte des Videos. Danach neigt sich der Terminator zur anderen Seite. Auf der Südhalbkugel beginnt der Winter und im Norden der Sommer. Im Film endet das Jahr mit der nächsten September-Tagundnachtgleiche. Damit ist eine weitere der Milliarden Reisen der Erde um die Sonne vollendet.

Zur Originalseite

Juno fliegt an Ganymed und Jupiter vorbei

Videocredit: Bilder: NASA, JPL-Caltech, SWRI, MSSS; Animation: Koji Kuramura, Gerald Eichstädt, Mike Stetson; Musik: Vangelis

Wie wäre es wohl, am größten Mond im Sonnensystem vorbeizufliegen? Die robotische Raumsonde Juno flog 2021 an Jupiters großem Mond Ganymed vorüber. Dabei nahm sie Bilder auf, die dann digital zu einem detaillierten Film zusammengesetzt wurden.

Das Video beginnt mit dem Überflug über eine zweifarbige Oberfläche des Mondes, der 2000 km groß ist. Es zeigt eine fremdartige eisige Landschaft, die von Tälern und Kratern übersät ist. Die Rillen werden wahrscheinlich durch Platten verursacht, die sich bewegen. Die Krater entstehen durch harte Einschläge.

Juno zog auf ihrer Bahn weiter und kam zum 34. Mal ganz nah an Jupiters Wolken vorbei. Das digitale Video zeigt zahlreiche Wolkenwirbel im Norden. Farbige Zonen und Bänder umspannen in der Mitte den ganzen Planeten. Viele ovale weiße Wolken sind wie Perlschnüre aufgereiht. Zum Schluss gibt es dann wieder Wolkenwirbel, aber diesmal im Süden.

Zur Originalseite

Huygens‘ Blick auf Titans Oberfläche

Das verschwommene Bild zeigt eine steinige Landschaft, die in orangefarbenes Licht getaucht ist. Die sensationelle Aufnahme stammt von der Landesonde Huygens, die mit Cassini zu Saturn flog und auf dem Mond Titan landete.

Bildcredit: ESA, NASA, JPL, U. Arizona, Landesonde Huygens

Was würde man sehen, wenn man auf Titan stehen könnte? Dieses Farbbild zeigt die Ansicht einer fremdartigen, weit entfernten Landschaft auf Saturns größtem Mond Titan. Im Jahr 2005 nahm die ESA-Sonde Huygens diese Szene auf. Die Sonde sank damals 2,5 Stunden lang durch die dichte Atmosphäre aus Stickstoff, die mit Methan vermischt ist.

Die Felsen könnten aus gefrorenem Wasser und Kohlenwasserstoffen bestehen. Sie sind in unheimliches orangefarbenes Licht getaucht und liegen in der Szene verstreut. Die unwirtlichen Temperaturen betragen -179 °C. Der hellere Stein links unter der Mitte ist ungefähr 15 Zentimeter groß. Er ist 85 Zentimeter von der Kamera entfernt.

Man vermutet, dass die untertassenförmige Raumsonde etwa 15 Zentimeter tief in die Oberfläche von Titan eindrang. Demnach hätte er etwa die Beschaffenheit von nassem Sand oder Lehm.

Die Batterie der Huygens-Sonde machte es möglich, dass etwas mehr als 90 Minuten nach der Landung Daten aufgenommen und gesendet wurden. Die bizarre chemische Umgebung von Titan könnte der Erde ähnlich sein, bevor darauf Leben entstand.

Zur Originalseite

Straße zum galaktischen Zentrum

Das Kompositbild zeigt im Vordergrund das Monument Valley in Utah in den USA. Im Hintergrund ist die Ebene der Milchstraße mit dem Zentrum der Galaxis.

Bildcredit und Bildrechte: Michael Abramyan

Geht der Weg zum Zentrum der Galaxis durch das amerikanische Monument Valley? Das muss nicht so sein. Sollte aber der Weg dort entlang führen: macht ein Foto! In diesem Fall ist es die US-Bundesstraße U.S. Highway 163. Ikonische Hügel im Reservat der Navajo (Navajo Nation Reservation) säumen den Horizont. Das Band der Milchstraße reicht vom Himmel herab. Es wirkt wie eine Verlängerung der Straße auf der Erde.

Staubwolken bilden dunkle Filamente in der Milchstraße und somit einen Kontrast zu den Milliarden heller Sternen und bunt leuchtender Gaswolken. Dazu gehören der Lagunennebel und der Trifidnebel.

Dieses Bild ist ein Komposit mehrerer Aufnahmen mit derselben Kamera am selben Ort: dem Forest Gump Point im US-Bundesstaat Utah. Der Vordergrund wurde kurz nach Sonnenuntergang aufgenommen. Es war Anfang September 2021 zur „blauen Stunde„. Der Hintergrund ist ein Mosaik aus vier Aufnahmen. Sie entstanden einige Stunden später.

Zur Originalseite

Hubble zeigt einen hufeisenförmigen Einstein-Ring

Um eine elliptische gelbe Galaxie biegt sich ein blauer Ring. Es ist das verzerrte Abbild einer Galaxie, die viel weiter entfernt ist. Die gelbe Galaxie im Vordergrund wirkt dabei wie eine Linse, die das Licht bricht.

Bildcredit: ESA/Hubble und NASA

Was ist groß und blau und kann sich um eine ganze Galaxie biegen? Die Fata Morgana einer Gravitationslinse. Im Vordergrund liegt eine massereiche elliptische Galaxie (leuchtend rote Galaxie: LRG). Sie verzerrt mit ihrer Gravitation das Licht der blauen Galaxie, die viel weiter entfernt ist, zu einem leuchtenden Bogen.

Normalerweise führt so eine Verbiegung des Lichtwegs zu zwei getrennten Bildern der weiter entfernten Galaxie. Doch in diesem Fall ist die räumliche Anordnung der Linse so genau, dass die Galaxie im Hintergrund zu einem Hufeisen verzerrt wird. Die Form ist sogar fast ein geschlossener Einsteinring.

LRG 3-757 wurde zwar schon 2007 in den Daten der Sloan Digital Sky Survey (SDSS) entdeckt. Doch dieses Bild wurde erst bei einer nachfolgenden Beobachtung mit dem Weltraumteleskop Hubble mit der Wide Field Camera 3 aufgenommen.

Die zentrale Galaxie, welche die Linse bildet, wurde kürzlich erneut untersucht. Dabei zeigte sich, dass sie ein einzelnes Schwarzes Loch enthält. Es soll 36 Milliarden Sonnenmassen besitzen.

Zur Originalseite