Spiel: Super Planet Crash

Bildcredit und Lizenz: Stefano Meschiari (U. Texas at Austin) und das SAVE/Point-Team

Schafft ihr ein Planetensystem, das 1000 Jahre übersteht? Mit dem Spiel Super Planet Crash könnt ihr es versuchen. Klickt einfach in die Nähe des Zentralsterns, um Planeten zu bilden – bis zu 10 sind möglich.

Links könnt ihr – nach Masse sortiert – eine Planetenart wählen: Erde, Super-Erde, Eisriese, Riesenplanet, Brauner Zwerg oder Zwergstern. Jeder Planet wird nicht nur vom zentralen, sonnenähnlichen Stern angezogen, sondern auch von anderen Planeten. Ihr bekommt Punkte, und für dichtere oder bewohnbare Systeme gibt es einen Bonus. Das Spiel endet nach 1000 Jahren oder wenn ein Planet durch die Gravitation hinausgeschleudert wird.

In den letzten Jahren wurden viele exoplanetare Systeme entdeckt, und Super Planet Crash zeigt, warum einige davon stabil sind. Wenn ihr einige Male Super Planet Crash spielt, könnt ihr euch wahrscheinlich vorstellen, warum vermutet wird, dass unser Sonnensystem während seiner Entstehung Planeten verloren hat.

Zur Originalseite

Junge Sterne in NGC 346

Die massereichen Sterne in NGC 346 im Sternbild Tukan auf diesem Hubble-Bild sind kurzlebig, aber energiereich.

Bildcredit: NASA, ESA, Antonella Nota (ESA/STScI) et al.,

Die massereichen Sterne von NGC 346 sind kurzlebig, aber sehr energiegeladen. Der Sternhaufen ist in die größte Sternbildungsregion in der Kleinen Magellanschen Wolke eingebettet, diese ist etwa 210.000 Lichtjahre entfernt.

Die stellaren Winde und die Strahlung der Sterne sprengen eine interstellare Höhlung in die großen Gas- und Staubwolken mit einem Durchmesser von etwa 200 Lichtjahren. Dabei lösen sie Sternbildung aus und prägen den dichten inneren Rand der Region.

Die Sternbildungsregion ist als N66 katalogisiert und enthält anscheinend auch eine große Population junger Sterne. Die jungen, etwa 3 bis 5 Millionen Jahre alten Sterne, die im eingebetteten Sternhaufen verstreut sind, verbrennen in ihren Kernen noch keinen Wasserstoff.

Auf diesem Falschfarbenbild des Weltraumteleskops Hubble sind sichtbares und nahinfrarotes Licht in Blau und Grün abgebildet. Das Licht der Emissionen von atomarem Wasserstoff ist rot.

Zur Originalseite

Die inneren Ringe der Spiralgalaxie NGC 1512

Kernring um das Galaxienzentrum von NGC 1512 im Sternbild Pendeluhr.

Bildcredit: NASA, ESA, Weltraumteleskop Hubble

Die meisten Galaxien haben keine Ringe – warum hat diese Galaxie zwei? Das helle Band nahe dem Zentrum von NGC 1512 ist ein Kernring um das Galaxienzentrum, in dem kürzlich entstandene Sterne hell leuchten.

Doch die meisten Sterne und das dazugehörige Gas und der Staub umkreisen das galaktische Zentrum in einem Ring, der viel weiter draußen verläuft – hier nahe am Bildrand. Dieser Ring wird – gegen die Intuition – als innerer Ring bezeichnet. Bei genauem Hinsehen erkennt ihr, dass dieser innere Ring die Enden eines diffusen Zentralbalkens verbindet, der waagrecht durch die Galaxie verläuft.

Es wird angenommen, dass die Ringstrukturen durch Asymmetrien in NGC 1512 in einem langwierigen Prozess entstehen, der als säkulare Entwicklung bezeichnet wird. Durch die Schwerkraft dieser Galaxienasymmetrien,einschließlich des Sternbalkens fallen Gas und Staub vom inneren Ring zum Kernring und verstärken so seine Sternbildungsrate.

Manche Spiralgalaxien haben noch einen äußeren dritten Ring, der die jeweilige Galaxie noch weiter draußen umkreist.

Zur Originalseite

NGC 3572 und die südlichen Kaulquappen

NGC 3572 im Sternbild Carina (Schiffskiel) ist ein Emissionsnebel und wird auch als die Südlichen Kaulquappen bezeichnet.

Bildcredit und Bildrechte: Carlos Taylor

Diese kosmische Himmelslandschaft zeigt leuchtendes Gas, dunkle Staubwolken und junge Sterne in NGC 3572 – ein schöner Emissionsnebel mit Sternhaufen, der am fernen südlichen Himmel durchs nautische Sternbild Carina segelt. In der Entfernung des Sternhaufens von schätzungsweise 9000 Lichtjahren misst der Teleskopausschnitt etwa 100 Lichtjahre, die Sterne von NGC 3572 befinden sich oben in der Mitte.

Das interstellare Gas und Staub ist Teil der Molekülwolke, in welcher der Sternhaufen entstanden ist. Dichte Materieströme im Nebel, die von den Sternwinden und der Strahlung abgetragen werden, entfernen sich eindeutig von den energiereichen jungen Sternen. Wahrscheinlich entstehen darin weiterhin neue Sterne. Ihre Form erinnert an die Kaulquappen von IC 410 am nördlichen Sternenhimmel.

In den kommenden Dutzenden bis Hunderten Millionen Jahren werden Gas und Sterne im Haufen aufgelöst, und zwar durch gravitationsbedingte Gezeiten und gewaltige Supernovaexplosionen, welche die kurzen Leben der massereichen Sterne im Haufen beenden.

Zur Originalseite

Sterne und Globulen im Running-Chicken-Nebel

Der Emissionsnebel IC 2944 im Sternbild Zentaur ist auch als Running-Chicken-Nebel bekannt.

Bildcredit und Bildrechte: Stefan Steve Bemmerl

Beschreibung: Aus den Eiern dieses gewaltigen Huhnes können Sterne entstehen. Dieser Emissionsnebel ist hier in wissenschaftlich zugewiesenen Farben abgebildet. Er ist als IC 2944 katalogisiert, aber wegen der Form seiner größeren Erscheinung als Running-Chicken-Nebel bekannt.

Am unteren Bildrand befinden sich kleine, dunkle Molekülwolken aus undurchsichtigem kosmischem Staub. Diese „Eier“ werden nach ihrem Entdecker als Thackerays Globulen bezeichnet. Sie sind mögliche Orte für die gravitative Kondensation neuer Sterne, doch ihr Schicksal ist ungewiss, da sie durch die intensive Strahlung junger Sterne in der Nähe rasch abgetragen werden. Diese masse- und energiereichen Sterne bilden zusammen mit fleckigem, leuchtendem Gas und komplexen Regionen aus reflektierendem Staub den offenen Haufen Collinder 249.

Die prächtige Himmelslandschaft umfasst etwa 60 Lichtjahre in der geschätzten Entfernung des Nebels von 6500 Lichtjahren.

Zur Originalseite

N11: Sternwolken der GMW

Das Bild zeigt den Dunkelnebel N11 in der der Großen Magellanschen Wolke GMW, einer Begleitgalaxie unserer Milchstraße.

Bildcredit und Bildrechte: NASA, ESA; Bearbeitung: Josh Lake

Beschreibung: Massereiche Sterne, raue Winde, Berge aus Staub und energiereiches Licht formen eine der größten und malerischsten Sternbildungsregionen in der Lokalen Gruppe. Die Region ist als N11 bekannt. Auf vielen Bildern ihrer Heimatgalaxie, einer Nachbarin der Milchstraße, die als Große Magellanische Wolke (GMW) bekannt ist, sieht man sie rechts oben.

Dieses Bild wurde zu wissenschaftlichen Zwecken mit dem Weltraumteleskop Hubble fotografiert und für künstlerische Zwecke nachbearbeitet. Der hier gezeigte Bereich ist als NGC 1763 bekannt, doch der ganze Emissionsnebel N11 ist nach dem Tarantelnebel der zweitgrößte in der GMW. Die Aufnahme zeigt auch kompakte Globulen aus dunklem Staub, die neu entstehende Sterne enthalten.

Eine aktuelle Studie über veränderliche Sterne in der GMW mit Hubble half dabei, die Entfernungsskala des beobachtbaren Universums neu zu kalibrieren, ergab jedoch eine etwas andere Skala als jene, die anhand des allgegenwärtigen kosmischen Mikrowellenhintergrundes ermittelt wurde.

Heute in Wien ab 18 Uhr: Yuri’s Night im Technischen Museum – Eintritt frei!

Astrophysik: 2700+ Codes in der Astrophysik-Quellcode-Bibliothek
Zur Originalseite

Eine Faser im Einhorn

Der Wolken­komplex Monoceros R1 im Sternbild Einhorn mit den bläulichen Reflexionsnebeln IC 447 und IC 446.

Bildcredit und Bildrechte: Giorgio Ferrari

Beschreibung: Bläuliche Reflexionsnebel füllen diese staubige Weite. Das scharfe Teleskopbild zeigt mehr als einen Grad am Himmel im blassen, fantasievollen Sternbild Monoceros (Einhorn). Im 2500 Lichtjahre entfernten Wolken­komplex Monoceros R1 liegt links der bläuliche IC 447, der über eine lange dunkle Staubfaser mit IC 446 rechts unten verbunden.

In IC 447 sind junge, massereiche blaue Sterne eingebettet, die viel heißer sind als die Sonne. Ihr Licht wird von der kosmischen Staubwolke reflektiert. Beobachtungen zeigen, dass IC 446 auch ein junges stellares Objekt enthält – einen massereichen Stern in einem frühen Entwicklungsstadium. Die dunkle Faser aus Staub und molekularem Gas, welche die beiden Sternbildungsregionen verbindet, ist mehr als 15 Lichtjahre lang.

Zur Originalseite

Sternentstehung im Adlernebel

Hubble-Bild vom Kopf einer Säule im Adlernebel, auch Messier 16, im Sternbild Schlange.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Bildrechte: Ignacio Diaz Bobillo und Diego Gravinese

Beschreibung: Wo entstehen Sterne? Unter anderem wurden am Ende dieser riesigen Säulen aus Gas und Staub im Adlernebel (M16) Sternbildungsregionen in Form von „EGGs“ entdeckt.

EGGs ist die Abkürzung für evaporating gaseous globules (verdampfende Gaskugeln), dabei handelt es sich um dichte Regionen, die großteils aus molekularem Wasserstoff bestehen, diese kollabieren durch die Schwerkraft und bilden Sterne. Das Licht der heißesten und hellsten dieser neuen Sterne heizt das Ende der Säule auf, dadurch verdampft noch mehr Gas und Staub, wodurch weitere EGGs und junge Sterne zum Vorschein kommen.

Das Bild entstand aus Aufnahmen, die 2014 mit dem Weltraumteleskop Hubble in der Erdumlaufbahn mit einer Gesamtbelichtungszeit mehr als 30 Stunden aufgenommen wurden. Diese wurden von erfahrenen Freiwilligen in Argentinien mit modernen Programmen digital bearbeitet. Die Säulen, in denen die jungen Sterne entstehen, werden im Lauf der nächsten 100.000 Jahre nach und nach zerstört, wenn sie nicht zuvor von einer Supernova gesprengt werden.

Zur Originalseite