Schichten einer totalen Sonnenfinsternis

Das Bild entstand aus drei verschiedenen Aufnahmen. Die äußere orangefarbene Aufnahme zeigt die Sicht von SOHO. Weiter innen ist ein schwarzweißes Bild von einer Sonnenfinsternis-Expedition. Innen wurde die Sonne zeitgleich von SDO abgebildet.

Bildcredit: Innen: Solar Dynamics Observatory, LMSAL und NASA’s GSFC; Mitte: Jay Pasachoff, Ron Dantowitz und die Williams College Solar Eclipse Expedition/NSF/National Geographic; Außen: LASCO von NRL auf SOHO von ESA

Weder Regen noch Schnee oder das Dunkel der Nacht halten eine Raumsonde im All davon ab, die Sonne zu beobachten. Das SOnnen-Heliosphären-Observatorium (SOHO) der NASA beobachtet an seinem Aussichtspunkt ständig die äußere Atmosphäre der Sonne. Es ist die Korona. SOHOs Bahn liegt von der Erde aus 1,5 Millionen Kilometer Richtung Sonne.

Doch auf der Erde sieht man die hübschen koronalen Ströme und Strukturen nur bei einer totalen Sonnenfinsternis. Dann bedeckt der Mond für kurze Zeit die gleißend helle Oberfläche der Sonne. Man sieht die detailreiche Aktivität der Korona bis zur Sonne hinunter.

Das Kompositbild zeigt SOHOs ungestörte Sicht auf die Sonnenkorona bei der Finsternis im letzten Monat. Im äußeren Bereich ist sie orangefarben gezeigt. Die krapfenförmige Region in der Mitte ist die Korona. Sie wurde von der Expedition des Williams Colleges zur Sonnenfinsternis nach Salem in Oregon fotografiert.

Zeitgleich entstand die innere Ansicht. Sie stammt vom Solar Dynamics Observatory (SDO) der NASA im Erdorbit. SDO bildete die Sonne in extremem Ultraviolettlicht ab. Sie ist golden gezeigt. SDO befand sich außerhalb der Totalität.

Zur Originalseite

Fackle wohl, AR2673!

SDO machte dieses Bild in extremem Ultraviolettlicht. Rechts am Rand strahlt eine extrem helle Aktive Region, die auf die Rückseite der Sonne verschwindet.

Bildcredit: NASA, SDO und die AIA-, EVE- und HMI-Wissenschaftsteams

Die riesige aktive Region AR2673 rotiert aus der Sicht unseres Planeten am westlichen Rand der Sonne. Am 10. September brach wieder eine intensive Sonneneruption aus. Danach folgte ein großer koronaler Massenauswurf. Die Protuberanz funkelt rechts im Bild. Sie wurde vom Solar Dynamics Observatory (SDO), das auf die Sonne starrt, im extremen Ultraviolett aufgenommen.

Die heftige Protuberanz war die vierte der Klasse X, die AR2673 diesen Monat ausschleuderte. Der letzte koronale Massenauswurf aus dieser aktiven Region traf 2 Tage später auf die Magnetosphäre der Erde. Jetzt nehmen wir Abschied von der mächtigen Region AR2673. In die nächsten zwei Wochen befindet sich die gewaltige Sonnenfleckengruppe auf der Rückseite der Sonne.

Abschied von Cassini

Zur Originalseite

Eine riesige Sonnenprotuberanz bricht aus

Videocredit: NASAGSFC, SDO-AIA-Team

Manchmal explodieren Protuberanzen über der Sonne. Ende 2010 schwebte ein riesiges Filament länger als eine Woche über der Oberfläche der Sonne. Erst dann brach es aus. Das Solar Dynamics Observatory (SDO) kreist im Erdorbit. Es nahm die Bildfolge in einer Farbe des UV-Lichtes auf.

Die Explosion führte zu einem koronalen Massenauswurf. Dabei wurde sehr energiereiches Plasma ins Sonnensystem geschleudert. Doch die Plasmawolke verfehlte die Erde. Daher entstanden keine Polarlichter. Der Ausbruch zeigt, dass Bereiche auf der Sonne, die weit voneinander entfernt sind, manchmal gemeinsam agieren.

Solche Explosionen werden in den nächsten Jahren wohl seltener. Die magnetische Aktivität an der Oberfläche der Sonne erreicht nämlich ein Minimum.

Zur Originalseite

Merkurtransit-Musikvideo von SDO

Videocredit: NASAs Goddard-Raumfahrtzentrum, Genna Duberstein; Musik: Encompass von Mark Petrie

Ein kleiner schwarzer Punkt wandert über die Sonne – was ist es? Es ist der Planet Merkur. Anfang der Woche zog er vor der Sonne vorbei. Die klarste Sicht auf Merkur bot der Erdorbit. Das Solar Dynamics Observatory SDO hatte bei der Aufnahme eine Aussicht ohne Unterbrechung, und zwar nicht nur in sichtbarem Licht, sondern auch im UV-Spektrum.

Dieser vertonte Kompositfilm zeigt die Querung. Das Ereignis war wissenschaftlich erfolgreich, denn man konnte die Bestandteile von Merkurs ultradünner Atmosphäre besser bestimmen. Doch es war auch kulturell erfolgreich, weil Menschen auf der ganzen Welt ein seltenes astronomisches Phänomen beobachteten. Viele eindrucksvolle Bilder des Merkurtransits aus (und über) der ganzen Welt werden stolz gezeigt.

Zur Originalseite

Ausbruch einer Protuberanz von SDO

Videocredit: NASA / Goddard / SDO-AIA-Team

Wenn Protuberanzen ausbrechen, gehört das zu den spektakulärsten Ansichten auf der Sonne. Die NASA-Raumsonde Solar Dynamics Observatory SDO kreist auf ihrer Behn um die Sonne. 2011 bildete SDO eine eindrucksvoll große Protuberanz ab, die auf der Oberfläche ausbrach.

Dieses Zeitraffervideo wäre in Echtzeit 90 Minuten lang. Alle 24 Sekunden wurde dafür ein neues Bild in Ultraviolettlicht fotografiert. Das Video zeigt die dramatische Explosion der gewaltigen Protuberanz. Die ganze Erde passt leicht unter den wallenden Schleier aus heißem Gas.

Das Magnetfeld der Sonne lenkt eine Protuberanz. Manchmal schwebt eine Protuberanz längere Zeit über der Sonnenoberfläche. Das kann sogar etwa einen Monat dauern. Eine Protuberanz kann als koronaler Massenauswurf (KMA) ausbrechen. Dann schleudert sie heißes Gas ins Sonnensystem.

Der Energiekreislauf, bei dem eine Sonnenprotuberanz entsteht, wird noch erforscht. Inzwischen ist das Maximum an Aktivität auf der Sonne vorbei. Daher nehmen Phänomene auf der Sonne wie ausbrechende Protuberanzen in den nächsten Jahren ab.

Zur Originalseite

Die Sonnenfleckengruppe AR 2339 kreuzt die Sonne

Images Credit: NASA, SDO; Videobearbeitung und Videorechte: Stanislav Korotkiy (AstroAlert) und Mikhail Chubarets; Musik: Pas de Deux (Bird Creek)

Wie entwickeln sich Sonnenflecken? Große, dunkle Sonnenflecken – und die aktiven Regionen, die sie enthalten – können wochenlang bestehen. Doch sie verändern sich ständig. Diese Änderungen waren vor wenigen Wochen besonders offenkundig, als die Aktive Region AR 2339 am Rand der Sonne auftauchte. Die darauf folgenden 12 Tage wurde sie vom Solar Dynamics Observatory (SDO) der NASA beobachtet.

Dieses Zeitraffervideo zeigt, wie manche Sonnenflecken auseinandertreiben, während andere verschmelzen. Die ganze Zeit verlagern sich die dunklen zentralen Umbrae. Die helleren Penumbrae außen flimmern und flackern. Die umgebende Sonne flackert scheinbar, weil die gelben Granulen im Laufe von Stunden kommen und gehen. Die Granulen sehen aus wie ein Teppich.

Sonnenflecken sind relativ kühle Regionen. Dort dringt das lokale Magnetfeld durch die Sonnenoberfläche, was die Aufheizung verhindert. Letzte Woche erreichte eine noch aktivere Region – AR 2371 – die Vorderseite der Sonne. Sie löste mächtige Sonnenfackeln zu aus, die hier auf der Erde zu eindrucksvollen Polarlichtern führten.

Zur Originalseite

Ein extrem langes Filament auf der Sonne

Die Sonne ist bildfüllend dargestellt. Auf der Oberfläche sind pelzartige Strukturen, einige helle Flecken und ein sehr langes dunkles Filament. Am Rand ist die Sonne etwas dunkler und orangefarben.

Bildcredit und Bildrechte: Oliver Hardy

Gestern war auf der Sonne eines der längsten Filamente zu sehen, das je abgebildet wurde. Vielleicht ist es auch heute noch da. Das gewaltige Filament ist der dunkle Streifen unter der Mitte, es reicht auf der Vorderseite der Sonne über eine Distanz, die länger ist als der Sonnenradius – mehr als 700.000 Kilometer.

Ein Filament besteht aus heißem Gas, das vom Magnetfeld der Sonne in Schwebe gehalten wird. Von der Seite erscheint es als erhabene Protuberanz. Das Bild zeigt das Filament in Licht, das von Wasserstoff abgestrahlt wird. Dieses Licht zeigt auch die Chromosphäre der Sonne.

Sonnenbeobachtungsteleskope wie das Solar Dynamics Observatory (SDO) der NASA verfolgen diese ungewöhnliche Struktur. Gestern beobachtete das SDO ein einhüllendes spiralförmiges Magnetfeld. Filamente bestehen typischerweise nur Stunden oder Tage. Teile davon könnten jederzeit kollabieren oder ausbrechen. Bei einem Ausbruch werfen sie heißes Plasma entweder zur Sonne zurück oder schleudern es ins äußere Sonnensystem.

Ist das Filament noch da? Schaut nach, indem ihr auf das aktuelle SDO-Sonnenbild klickt.

Zur Originalseite

NuSTAR zeigt die Sonne in Röntgenlicht

Die Sonne ist in energiereichem Ultraviolettlicht dargestellt. Aus der roten, gefaserten Oberfläche dringen blau und grün leuchtende Ausbrüche.

Bildcredit: NuSTAR, SDO, NASA

Warum sind Regionen über Sonnenflecken so heiß? Sonnenflecken sind etwas kühler als die umgebende Sonnenoberfläche. Sie entstehen durch Magnetfelder. Diese verringern das Aufheizen durch Konvektion. Es ist also ungewöhnlich, dass Regionen hundertmal heißer sein können. Solche Regionen finden wir sehr hoch oben in der Sonnenkorona.

Warum ist das so? Um das herauszufinden, richtete die NASA das sehr empfindliche Röntgenteleskop des Satelliten NuSTAR (Nuclear Spectroscopic Telescope Array) zur Sonne.

Oben seht ihr die Sonne in Ultraviolettlicht. Eine Aufnahme des SDO (Solar Dynamics Observatory) ist rot dargestellt. Das Sonnenteleskop SDO umkreist die Erde. Emissionen über den Sonnenflecken wurden in grünen und blauen Falschfarben darüber gelegt. Sie wurden von NuSTAR in anderen energiereichen Wellenlängen von Röntgenlicht gemessen. Diese Frequenzen zeigen Regionen mit extrem hoher Temperatur.

Was erhitzt die Sonnenatmosphäre? Das finden wir wohl nicht allein mit diesem Erstbild heraus. Man vermutet Nano-Eruptionen. Das sind kurze Ausbrüche, die vielleicht zu der ungewöhnlichen Aufheizung führen. Künftige Bilder von NuSTAR sollen diese Nano-Eruptionen finden.

Zur Originalseite