Cassini zeigt Saturn in Infrarot

Die Raumsonde Cassini blickt von schräg oben auf den Planeten Saturn, der fast das ganze Bild füllt. Oben und unten sind die Ringe zu sehen. Am Nordpol von Saturn breitet sich das berühmte Sechseck aus.

Bildcredit: NASA, JPL-Caltech, SSI; Bearbeitung: Maksim Kakitsev

Viele Details auf Saturn treten im Infrarotlicht klar hervor. Wolkenbänder haben tolle Strukturen. Dazu zählen auch ausgedehnte Stürme. In Infrarot ist auch das ungewöhnliche sechseckige Wolkenmuster um Saturns Nordpol ziemlich auffällig. Jede Seite des dunklen Sechsecks ist etwa so breit wie die Erde.

Niemand ahnte von der Existenz des Sechsecks. Sein Ursprung und der Grund für seine Stabilität werden weiterhin erforscht. Saturns berühmte Ringe kreisen um den Planeten und werfen Schatten unter dem Äquator.

Das Bild wurde erst kürzlich bearbeitet. Doch die robotische Raumsonde Cassini fotografierte es schon 2014 in mehreren Wellenlängen von Infrarot. Im September endet die Mission Cassini dramatisch. Dann wird die Raumsonde auf Tauchgang in den Ringriesen gelenkt.

Zur Originalseite

NGC 602 und dahinter

Der Sternhaufen NGC 602 ist von malerischen Staubwolken umgeben, die am Rand zu dichten Graten komprimiert wurden.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optisch: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Kleine Magellansche Wolke ist eine Begleitgalaxie der Milchstraße. Sie ist etwa 200.000 Lichtjahre von uns entfernt. An ihrem Rand liegt der 5 Millionen Jahre junge Sternhaufen NGC 602. Das faszinierende Hubble-Bild zeigt NGC 602, der von dem Gas und Staub umgeben ist, in dem er entstand.

Bilder im Röntgenlicht von Chandra und in Infrarot von Spitzer ergänzen die Ansicht. Die fantastischen Grate und zurückgefegten Formen sind klare Hinweise, dass die energiereiche Strahlung und die Stoßwellen der massereichen jungen Sterne in NGC 602 die staubige Materie erodiert haben. Dabei lösten sie eine Serie an Sternbildung aus, die vom Zentrum des Sternhaufens ausgeht.

In der Distanz der Kleinen Magellanschen Wolke ist das Bild etwa 200 Lichtjahre breit. Doch die scharfe vielfarbige Ansicht zeigt auch eine reizende Auswahl an Galaxien, die dahinter liegen. Sie sind Hunderte Millionen Lichtjahre oder mehr von NGC 602 entfernt.

Zur Originalseite

Spalte das Universum

Bildcredit: NASA, Erwin Schrödingers Katze

Jetzt, bevor ihr den Knopf drückt, sind zwei künftige Universen möglich. Wenn ihr den Knopf gedrückt habt, lebt ihr in einem dieser beiden weiter. Das ist eine echte Web-Version von Schrödingers berühmtem Experiment mit Katze. Wenn man auf diesem Astronautenbild den roten Knopf kickt, ändert sich das Bild, sodass der Astronaut eine von zwei Katzen zeigt. Eine lebt, die andere ist tot. Der Zeitpunkt des Klicks, kombiniert mit den Schaltungen im Gehirn und den Millisekunden Verzögerung des Geräts, liefern durch den Zufall der Quantenmechanik ein potenziell vorrangiges Ergebnis.

Manche glauben, dass die Quantenentscheidung, die ihr ausgelöst habt, das Universum teilt. Nach dieser Vorstellung existieren das Universum mit lebendiger und das Universum mit toter Katze in getrennten Teilen eines größeren Multiversums. Andere meinen, dass das Ergebnis eures Klicks die beiden möglichen Universen zu einem einzigen kollabieren lassen. Das geschieht auf eine nicht vorhersehbare Art und Weise.

Wieder andere glauben, dass das Universum klassisch deterministisch ist. Dann könnt ihr das Universum nicht wirklich spalten, wenn ihr den Knopf drückt. Stattdessen führt ihr nur eine Aktion aus, die seit Anbeginn der Zeiten so vorgesehen war. Egal, wie närrisch ihr euch beim Drücken des roten Knopfes fühlt und wie das Ergebnis ausfällt: Wir von APOD wünschen einen lustigen 1. April!

Zur Originalseite

67P in 3D

Zwei Bilder wurden in Rot und Cyan gefärbt und so übereinander gelegt, dass das Bild dreidimensional wirkt, wenn man es mit gefärbten Brillen betrachtet.

Bildcredit: ESA, Rosetta, MPS, OSIRIS; UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – Stereo: D.Romeuf, G.Faury, P.Lamy

Nehmt eure rot-cyanfarbige Brille und seht damit die Oberfläche des Kometen Tschurjumow-Gerassimenko an. Er ist auch als Komet 67P bekannt. Für die Anaglyphe wurden zwei Bilder der Telekamera OSIRIS der Raumsonde Rosetta kombiniert. Die Bilder stammen vom 22. September 2014.

Die schroffe, felsige Landschaft in 3D liegt in der Region Seth auf dem zweilappigen Kern des Kometen. Sie ist etwa 985 mal 820 Meter groß und von runden Graten übersät. In den Vertiefungen und an den abgeflachten Regionen sind Felsbrocken und Trümmer verteilt. Die große runde Grube im Vordergrund mit steilen Wänden ist etwa 180 Meter groß.

Rosettas Mission zum Kometen endete im September 2016, als die Raumsonde bei einem kontrollierten Absturz zur Oberfläche des Kometen gelenkt wurde.

Zur Originalseite

Junge Sterne und staubige Nebel im Stier

Über ein Feld aus dicht verteilten Sternen legt sich eine Wolke aus braunen Nebeln. Links wird ein Teil des Nebels blau beleuchtet.

Bildcredit und Bildrechte: Lloyd L. Smith, Deep Sky West

Diese komplexen, staubigen Nebel sind etwa 450 Lichtjahre entfernt. Sie liegen am Rand der Taurus-Molekülwolke. Das Teleskopfeld ist 2 Grad breit. Es entstand aus Bilddaten, die während fast 40 Stunden Belichtung gewonnen wurden. In der kosmischen Szenerie entstehen Sterne. Rechts im Bild sind einige junge T-Tauri-Sterne in die Reste der Wolken gebettet, in denen sie entstanden sind.

Die jungen Sterne sind Millionen Jahre alt und noch in ihrer stellaren Pubertät. Sie ändern ihre Helligkeit und befinden sich in späten Phasen des Kollapses durch Gravitation. Ihre Kerntemperatur steigt, bis die Kernfusion aufrecht bleibt. Dann wachsen sie zu stabilen Hauptreihensternen mit geringer Masse an. Dieses der Entwicklung von Sternen erreichte unsere Sonne, die ihr mittleres Alter erreicht hat, vor etwa 4,5 Milliarden Jahren.

Links befindet sich V1023 Tauri. Er ist ein weiterer junger veränderlicher Stern. V1023 Tauri liegt in einer gelblichen Staubwolke neben dem markanten blauen Reflexionsnebel Cederblad 30. Er ist auch als LBN 782 bekannt. Gleich über dem hellen bläulichen Reflexionsnebel liegt der dunkle Staubnebel Barnard 7.

Zur Originalseite

Nebel mit Laserstrahlen

Der Orionnebel wird von vier Laserstrahlen getroffen. Mit diesen werden künstliche Leitsterne erzeugt, welche die adaptive Optik der UT4 steuern und das Bild verbessern.

Bildcredit und Bildrechte: Stéphane Guisard (Los Cielos de America, TWAN)

Vier Laserstrahlen schneiden durch dieses Bild des Orionnebels. Der Anblick bot sich am Paranal-Observatorium der ESO in der Atacamawüste auf dem Planeten Erde. Die Laser sind kein Zeichen eines interstellaren Konflikts, sondern sie dienen der Beobachtung des Orionnebels mit der UT4, einem der großen Teleskope am Observatorium. Es führt einen technischen Test der adaptiven Optik durch. Damit wird das Bild geschärft.

Diese Ansicht des Nebels mit Laserstrahlen wurde mit einem kleinen Teleskop außerhalb der UT4-Kuppel fotografiert. Man sieht die Strahlen aus diesem Blickwinkel, weil die dichte niedrige Erdatmosphäre wenige Kilometer über dem Observatorium das Laserlicht streut. Die vier kleinen Segmente hinter den Strahlen sind die Emissionen einer Schicht in der Atmosphäre, die Atome von Natrium enthält. Diese Atome werden vom Laserlicht angeregt. Die Schicht liegt in einer Höhe von 80 bis 90 Kilometern.

Von der UT4 aus gesehen bilden diese Segmente helle Flecken. Sie dienen als künstliche Leitsterne. Ihre Schwankungen werden in Echtzeit gemessen. Das hilft, die Unschärfe durch die Atmosphäre in der Sichtlinie zu korrigieren, indem man einen verformbaren Spiegel im Teleskop steuert.

Zur Originalseite

König-der-Flügel-Hoodoo unter der Milchstraße

Links ragt ein erodierter Steinturm hoch, auf dem ein überhängender Deckstein einige Meter übersteht. Dahinter leuchtet die stark strukturierte Milchstraße mit Dunkelwolken.

Bildcredit und Bildrechte: Wayne Pinkston (LightCrafter Photography)

Diese Steinstruktur ist nicht nur surreal, sie ist auch real. Dass sie nicht berühmter ist, liegt vielleicht daran, dass sie kleiner ist, als es scheint. Der Deckstein hängt nur ein paar Meter über. Doch die Felsnase „König der Flügel“ im US-Bundesstaat New Mexico ist ein faszinierendes Beispiel einer ungewöhnlichen Gesteinsstruktur. Sie wird als Hoodoo bezeichnet. Hoodoos entstehen, wenn eine Schicht aus hartem Gestein über einer Schicht aus erodierendem weicheren Gestein liegt.

Es dauerte ein Jahr, um die perfekte Einbindung dieses Hoodoos in ein Foto mit Nachthimmel zu ergründen. Dazu zählte das Warten auf eine passende sternklare Nacht mit einem Himmel mit wenigen Wolken. Außerdem musste der Vordergrund in einem passenden Verhältnis zum natürlichen Licht des Hintergrundes künstlich beleuchtet werden.

Nach viel Planung und Warten entstand im Mai 2016 diese finale Aufnahme. Das Band unserer Milchstraße verläuft oben über dem Himmel. Sie ist ähnlich ausgerichtet wie der waagrechte Balken.

Zur Originalseite

Ein Schwarzes Loch mit Strahl wächst

Ein wirbelnder Strudel aus ominösen Wolken leuchtet in der Mitte schwach rötlich. Von dort strömt ein schmaler Strahl heraus. Das Bild ist eine Illustration.

Illustrationscredit: NASA, Swift, Aurore Simonnet (Sonoma State U.)

Was passiert, wenn ein Schwarzes Loch einen Stern verschlingt? Viele Details sind noch unbekannt. Doch neue Beobachtungen liefern neue Hinweise. 2014 beobachteten die Roboterteleskope des Projekts ASAS-SN auf der Erde eine mächtige Explosion. ASAS-SN ist die automatisierte Suche am ganzen Himmel nach Supernovae.

Diese Explosion wurde mit den Instrumenten des NASA-Satelliten Swift im Erdorbit weiter verfolgt. Aus den Emissionen, die man beobachtete, wurden Computermodelle erstellt. Sie passen zu einem Stern, der von einem fernen Schwarzen Loch, das viel Masse enthält, auseinander gerissen wird. Diese künstlerische Darstellung zeigt das mögliche Ergebnis so einer Kollision.

Das Schwarze Loch ist der winzige schwarze Punkt in der Mitte. Wenn Materie ins Loch fällt, kollidiert sie mit anderer Materie und erhitzt sich. Eine Akkretionsscheibe aus heißer Materie umgibt das Schwarze Loch. Sie war einst der Stern. Aus der Rotationsachse des Schwarzen Lochs strömt ein Strahl.

Zur Originalseite