Cassiopeia A wiederverwerten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, CXC, SAO

Beschreibung: Massereiche Sterne in unserer Milchstraße haben ein spektakuläres Leben. Nachdem sie aus riesigen kosmischen Wolken kollabiert sind, zünden ihr Kernbrennöfen und erzeugen in ihrem Inneren schwere Elemente. Nach wenigen Millionen Jahren explodiert das angereicherte Material in den interstellaren Raum zurück, wo erneut Sternbildung beginnen kann.

Diese als Cassiopeia A bekannte, expandierende Trümmerwolke ist ein Beispiel für diese Schlussphase des stellaren Lebenszyklus. Das Licht der Explosion, die diesen Supernovaüberrest erzeugte, war erstmals vor etwa 350 Jahren am Himmel des Planeten Erde zu sehen, doch das Licht brauchte etwa 11.000 Jahre, um zu uns zu gelangen. Dieses Falschfarbenbild des Röntgenobservatoriums Chandra zeigt die noch heißen Fasern und Knoten im Überrest Cassiopeia-A. Energiereiche Emissionen bestimmter Elemente wurden farbcodiert: Silizium rot, Schwefel gelb, Kalzium grün und Eisen violett. Das hilft Astronomen, die Wiederverwertung des Sternenstaubs in unserer Galaxis zu erforschen. Die Explosionswelle, die sich immer noch ausdehnt, ist der blaue äußere Ring.

Das scharfe Röntgenbild ist in der geschätzten Entfernung von Cassiopeia A etwa 30 Lichtjahre breit. Der helle Fleck nahe der Mitte ist ein Neutronenstern – der unglaublich dichte kollabierte Überrest des massereichen Sternkerns.

Zur Originalseite

Williamina Flemings dreieckiges Büschel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Sara Wager

Beschreibung: Diese verworrenen, chaotisch wirkenden Fasern aus erschüttertem leuchtendem Gas sind am Himmel des Planeten Erde im Sternbild Schwan als Teil des Schleiernebels ausgebreitet.

Der Schleiernebel ist ein großer Supernovaüberrest – eine expandierende Wolke, die bei der Todesexplosion eines massereichen Sterns entstanden ist. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren. Die interstellaren Stoßwellen wurden bei dem vernichtenden Ereignis hinausgesprengt, sie pflügen durch den Raum, fegen interstellare Materie auf und regen diese an.

Die leuchtenden Fasern sind eigentlich lange Wellen in einem Tuch, das von der Seite sichtbar ist. Auffallend gut aufgeteilt ist das Leuchten ionisierter, rot abgebildeter Wasserstoffatome und blau dargestellter Sauerstoffatome. Der Schleiernebel ist auch als Cygnusbogen bekannt und fast 3 Grad oder etwa 6 Vollmonddurchmesser groß. Das entspricht in seiner geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahren. Dieses Sichtfeld zeigt weniger als ein Drittel dieser Distanz.

Der Faserkomplex ist als NGC 6979 katalogisiert und wird häufig – nach einem Direktor des Harvard College Observatory – als Pickerings Dreieck bezeichnet. Er ist aber wegen seiner Entdeckerin, der Astronomin Williamina Fleming, auch als Flemings dreieckiges Büschel bekannt.

Zur Originalseite

Der Supernovaüberrest Simeis 147

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Daniel López (El Cielo de Canarias) / IAC

Beschreibung: Man verläuft sich leicht, wenn man auf diesem detailreichen Bild den verworrenen Fasern des blassen Supernovaüberrestes Simeis 147 folgt. Er ist auch als Sharpless 2-240 katalogisiert und hat den gängigen Kosenamen Spaghettinebel. Er liegt an den Grenzen der Sternbilder Stier und Fuhrmann und bedeckt am Himmel fast 3 Grad oder 6 Vollmonde. Das sind etwa 150 Lichtjahre in der geschätzten Entfernung der Sterntrümmerwolke, diese beträgt ungefähr 3000 Lichtjahre. Dieses Kompositbild enthält Bilddaten, die mit Schmalbandfiltern fotografiert wurden, um die rötlichen Emissionen ionisierter Wasserstoffatome zu verstärken, welche das komprimierte leuchtende Gas aufzuzeigen. Der Supernovaüberrest ist ungefähr 40.000 Jahre alt, somit erreichte das Licht der massereichen Sternexplosion die Erde erstmals vor 40.000 Jahren. Doch der expandierende Überrest ist nicht die einzige Nachwirkung. Die kosmische Katastrophe hinterließ auch einen rotierenden Neutronenstern oder Pulsar, dieser ist alles, was vom ursprünglichen Sternkern blieb.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Eric Coles

Beschreibung: Der normalerweise blasse, schwer fassbare Quallennebel wurde auf diesem faszinierenden Teleskopmosaik festgehalten. Die Szene wird unten vom Stern Eta Geminorum am Fuß der himmlischen Zwillinge verankert, der Quallennebel ist der hellere gewölbte Emissionsnebel mit Tentakeln, die unter der Mitte nach links baumeln.

Die kosmische Qualle ist Teil des blasenförmigen Supernovaüberrestes IC 443, die expandierende Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte den Planeten Erde erstmals vor 30.000 Jahren. Wie sein Cousin in astrophysikalischen Gewässern – der Krebsnebelsupernovaüberrest – enthält auch der Quallennebel bekanntlich einen Neutronenstern, das ist der Überrest eines kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt das Feld rechts oben.

Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Distanz wäre dieses Schmalband-Kompositbild, das in Farben der Hubblepalette präsentiert wird, etwa 300 Lichtjahre breit.

Ö1-Nachtquartier:Das Jahr in den Sternen“ mit Maria Pflug-Hofmayr
Zur Originalseite

NGC 2736 – der Bleistiftnebel

Vor einem rötlichen Nebel mit einem Teppich aus Sternen leuchtet ein blauer, strichförmiger Nebel, von dem nach oben Fasern auslaufen. Auch im Hintergrund sind einige Fasern erkennbar.

Bildcredit und Bildrechte: Howard Hedlund und Dave Jurasevich, Las Campanas Obs.

Dünne, helle, geflochtene Fasern bewegen sich zur Mitte des scharfen, detailreichen Farbkomposits. Es sind eigentlich lange Wellen in einem kosmischen Schleier aus leuchtendem Gas. Wir sehen den Schleier fast von der Seite. Er ist die leuchtende Oberfläche einer Stoßwelle, die mit mehr als 500.000 km/h durch den interstellaren Raum pflügt.

Das Gebilde ist als NGC 2736 katalogisiert. Seine längliche Form führte zum landläufigen Namen Bleistiftnebel. Er ist etwa 5 Lichtjahre lang und 800 Lichtjahre entfernt. Doch der Bleistiftnebel ist nur ein kleiner Teil des Vela-Supernovaüberrestes, der ungefähr 100 Lichtjahre groß ist. Der Vela-Überrest ist die Trümmerwolke eines Sterns, die sich ausdehnt. Die Explosion des Sterns war vor zirka 11.000 Jahren zu beobachten.

Ursprünglich pflanzte sich die Stoßwelle mit Millionen km/h fort. Inzwischen wurde sie deutlich langsamer. Sie fegte die interstellare Materie in ihrer Umgebung auf. Das Schmalband-Weitwinkelbild zeigt das charakteristische Leuchten ionisierter Wasserstoff– und Sauerstoffatome in roten und blau-grünen Farben.

Zur Originalseite

Der wirbelnde Kern im Krebsnebel

Hinter weißlichen Nebeln leuchten rote Fasern und blaue Nebel. Rechts neben der Mitte sind spiralförmige Wirbel zu sehen. Dort befindet sich auch der Krebspulsar, der nach der Explosion eines massereichen Sterns übrig blieb.

Bildcredit: NASA, ESADanksagung: J. Hester (ASU), M. Weisskopf (NASA / GSFC)

Im Krebsnebel rotiert ein magnetischer Neutronenstern. Der Krebspulsar ist so groß wie eine Stadt und dreht sich 30 Mal pro Sekunde. Dieses fantastische Hubble-Bild zeigt das Innere des Nebels. Darauf ist er der rechte der beiden hellen Sterne knapp unter dem zentralen Wirbel.

Das spektakuläre Bild ist etwa drei Lichtjahre breit. Es zeigt leuchtendes Gas, Hohlräume und wirbelnde Fasern. Der Wirbel ist in ein gespenstisches blaues Licht getaucht. Das blaue Leuchten ist Strahlung in sichtbarem Licht. Es stammt von Elektronen, die in einem starken Magnetfeld spiralförmig wirbeln. Dabei erreichen sie fast Lichtgeschwindigkeit. Wie ein kosmischer Dynamo liefert der Pulsar die Energie für das Leuchten im Nebel. Das treibt eine Stoßwelle durch das umgebende Material und beschleunigt die Elektronen auf ihren spiralförmigen Bahnen.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern eines massereichen Sterns, der explodierte. Der Krebsnebel ist der Rest der äußeren Sternenhülle und dehnt sich aus. Die Explosion der Supernova wurde auf dem Planeten Erde im Jahr 1054 beobachtet.

Zur Originalseite

Tychos Supernovaüberrest expandiert

Videocredit: NASA, CXC, GSFC, B. Williams et al.

Welcher Stern erzeugte diesen riesigen Bovist, der immer noch wächst? Hier ist das erste Video der Ausdehnung, das je von Tychos Supernovaüberrest erstellt wurde. Der Überrest entstand bei einer Sternexplosion, die der berühmte Astronom Tycho Brahe vor 400 Jahren beobachtete. Das Video dauert 2 Sekunden. Es ist ein Zeitraffer-Komposit aus Röntgenbildern, die von 2000 bis 2015 mit dem Röntgenteleskop Chandra im Weltraum aufgenommen wurden. Sie wurden mit einer Auswahl optischer Bilder ergänzt.

Die expandierende Gaswolke ist extrem heiß. Die Ausdehnung erfolgt mit leicht unterschiedlicher Geschwindigkeit. Dadurch erscheint die Wolke bauschig. Der Stern, aus dem SN 1572 entstand, löste sich wahrscheinlich ganz auf. Doch ein Stern mit der Bezeichnung Tycho G war vermutlich sein Begleiter. Er ist zu blass, um ihn hier zu erkennen.

Es ist wichtig, nach Vorläufern der Überreste von Tychos Supernova zu suchen. Es handelt sich nämlich um eine Supernova vom Typ Ia. Solche Supernovae sind wichtige Elemente der Entfernungsskala, mit der man den Maßstab des sichtbaren Universums kalibriert. Die Spitzenhelligkeit einer Typ-Ia-Supernova ist gut erklärbar. Das macht sie sehr wertvoll, um die Beziehung zwischen Blässe und Entfernung im fernen Universum zu erforschen.

Zur Originalseite

Supernovarest Simeis 147, der Spaghettinebel

In einem dicht besiedelten Sternenfeld mit wenigen hellen Sternen leuchtet ein verworrenes Knäuel aus roten Strähnen, die von dunkleren roten Nebeln umgeben ist.

Bildcredit und Bildrechte: Giuseppe Donatiello (Italien) und Tim Stone (USA)

Man verliert leicht den Faden, wenn man den komplexen Strähnen im Spaghettinebel folgt. Der Supernovaüberrest mit den leuchtenden Fasern ist als Simeis 147 und Sh2-240 katalogisiert. Er bedeckt am Himmel fast drei Grad, das entspricht der Breite von 6 Vollmonden. Die Wolke aus Sternschutt ist etwa 3000 Lichtjahre entfernt. In dieser Distanz entspricht das einer Breite von ungefähr 150 Lichtjahren.

Das scharfe Komposit entstand aus Bilddaten, die mit Schmalbandfiltern fotografiert wurden. So wurden die Emission der Wasserstoffatome betont, die das komprimierte leuchtende Gas säumen. Der Supernovaüberrest ist zirka 40.000 Jahre alt. Das bedeutet, dass das Licht der heftigen Sternexplosion erstmals vor 40.000 Jahren die Erde erreichte.

Der expandierende Überrest ist nicht das einzige Nachleuchten. Die kosmische Katastrophe hinterließ auch einen rotierenden Neutronenstern oder Pulsar. Er ist alles, was vom ursprünglichen Stern übrig blieb.

Zur Originalseite