Der Vela-Supernovaüberrest

Das Panoramabild ist 10 Grad breit. Es zeigt den Vela-Supernovaüberrest, der in der Milchstraße liegt, daher ist der Hintergrund dicht mit Sternen gespickt.

Bildcredit und Bildrechte: CEDIC TeamBearbeitung: Wolfgang Leitner

Die komplexe, schöne Himmelslandschaft liegt in der Ebene der Milchstraße. Das Teleskopbild zeigt den nordwestlichen Rand im Sternbild Segel (Vela). Der Ausschnitt ist breiter als 10 Grad. In der Mitte liegt hellste Filament im Vela-Supernovaüberrest. Er ist eine Trümmerwolke, die sich ausdehnt.

Die Wolke entstand bei der finalen Explosion eines massereichen Sterns. Ihr Licht erreichte die Erde vor etwa 11.000 Jahren. Von der kosmischen Katastrophe blieben komprimierte Filamente aus leuchtendem Gas zurück. Dabei entstand auch ein unglaublich dichter, rotierender Sternkern. Es ist der Vela-Pulsar.

Der Supernovaüberrest im Sternbild Schiffssegel ist etwa 800 Lichtjahre entfernt. Er ist in einen größeren, älteren Supernovaüberrest eingebettet, den Gum-Nebel.

Zur Originalseite

Sharpless 249 und der Quallennebel

Das Teleskopbild zeigt links oben den Emissionsnebel Sharpless 249. Rechts unten befindet sich der kompakte Quallennebel. Er ist als IC 443 katalogisiert. Der Hintergrund ist voller kleiner Sterne. Die beiden hellen Sterne links und rechts im Bild sind Mu und Eta Geminorum.

Bildcredit und Bildrechte: César Blanco González

Das Teleskopmosaik zeigt den blassen, schwer fassbaren Quallennebel. Die Szenerie ist rechts und links an den hellen Sternen Mu und Eta Geminorum verankert. Sie leuchten am Fuß der Himmelszwillinge. Der Quallennebel ist die helle, gebogene Emission rechts unter der Mitte. Unten baumeln seine Tentakel.

Die kosmische Qualle liegt im blasenförmigen Supernovaüberrest IC 443. Das ist die wachsende Trümmerwolke eines massereichen Sterns, der explodiert ist. Das Licht der Explosion erreichte die Erde vor mehr als 30.000 Jahren.

Sein Cousin in astrophysikalischen Gewässern ist der Krebsnebel. Auch er ist ein Supernovaüberrest. Beide Nebel enthalten einen Neutronenstern. Das ist der Rest des kollabierten Sternkerns. Der Emissionsnebel links oben ist Sharpless 249.

Der Quallennebel ist etwa 5000 Lichtjahre entfernt. In dieser Entfernung ist das Schmalband-Kompositbild etwa 300 Lichtjahre groß.

Zur Originalseite

M1: Der Krebsnebel

Mitten im Bild ist ein wolkiges Knäul mit vielen roten und blauen Fasern. Darum herum sind wenige schwach leuchtende Sterne verteilt.

Bildcredit und Bildrechte: Martin Pugh

Der Krebsnebel ist als M1 katalogisiert. Er ist also das erste Objekt auf Charles Messiers berühmter Liste aus dem 18. Jahrhundert von Dingen, die keine Kometen sind. Wir wissen heute, dass der Krebs die Trümmer einer Supernova sind. Er entstand nach der finalen Explosion eines massereichen Sterns. Die Supernova wurde 1054 beobachtet.

Diese scharfe, erdgebundene Teleskopansicht entstand aus Schmalbanddaten. Sie zeichnen die Emissionen ionisierter Sauerstoff- und Wasserstoffatome in Blau und Rot auf. So ist es leichter, die verschlungenen Fasern in der immer noch expandierenden Wolke zu erforschen.

Der Krebs-Pulsar ist ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Er ist eines der exotischsten Objekte, die zeitgenössische Forschende kennen. Man sieht ihn als hellen Fleck mitten im Nebel. Wie ein kosmischer Dynamo liefert der kollabierte Überrest des Sternkerns die Energie für das Leuchten der Krabbe im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist zirka 12 Lichtjahre groß. Seine Entfernung beträgt an die 6500 Lichtjahre. Man findet den Nebel im Sternbild Stier.

Zur Originalseite

Geist im östlichen Schleier

Vor einem Hintergrund aus kleinen, dicht verteilten Sternen leuchtet ein verworrener Nebel aus roten und blauen Fasern. Es ist ein Teil des Schleiernebels im Sternbild Schwan.

Bildcredit und Bildrechte: Ken Crawford (Rancho Del Sol Observatory)

Am Abend vor Allerheiligen sieht man furchterregende Formen und unheimliche Mienen. Sie spuken auch auf dieser kosmischen Nahaufnahme, die den östlichen Schleiernebel zeigt. Er ist ein großer Supernovaüberrest. Das ist die sich ausdehnende Trümmerwolke der finalen Explosion eines massereichen Sterns. Der ganze Schleier ist fast rund. Er bedeckt am Himmel ungefähr 3 Grad im Sternbild Schwan.

Der hier gezeigte Teil im östlichen Schleier ist nur ½ Grad groß. Das ist etwa die scheinbare Größe des Mondes. Der Schleiernebel ist beruhigende 1400 Lichtjahre von der Erde entfernt. Dort entspricht diese Winkelbreite 12 Lichtjahren. Das Komposit entstand aus Bilddaten, die mit Breit- und Schmalbandfiltern aufgenommen wurden. Emissionen von Wasserstoffatomen im Überrest sind rot dargestellt. Dazu kommt starkes Licht von Sauerstoffatomen in blau-grünen Farbtönen.

Im östlichen Schleier liegt eine weitere saisonale Erscheinung: der Hexenbesen.

Zur Originalseite

Supernovaüberrest Puppis A

Die faserartige bunte Wolke im Bild zeigt den Supernovaüberrest Puppis A im Sternbild Achterdeck des Schiffes. Die expandierende Wolke wurde in Röntgen- und Infrarotlicht aufgenommen und farbcodiert abgebildet.

Bildcredit: Röntgen: NASA/CXC/IAFE/ G. Dubner et al., ESA/XMM-Newton; Infrarot: NASA/ESA/JPL-Caltech/GSFC/ R. Arendt et al.

Der Supernovaüberrest Puppis A entstand durch die Explosion eines massereichen Sterns. Er breitet sich ins interstellare Medium aus. Seine Entfernung beträgt etwa 7000 Lichtjahre. In dieser Distanz ist die Sondierung in Falschfarben der komplexen Expansion etwa 180 Lichtjahre groß.

Das Bild basiert auf den vollständigsten Daten, die bislang in Röntgen- und Infrarotlicht erhoben wurden. Die Röntgendaten stammen von Chandra und XMM/Newton, die Infrarot-Daten vom Weltraumteleskop Spitzer.

Das faserartige Röntgenlicht ist in Blau abgebildet. Es stammt von Gas, das durch die Stoßwelle der Supernova aufgeheizt wurde. Das rot und grün dargestellte Infrarotlicht stammt von warmem Staub. Die hellen Pastelltöne zeigen Regionen, wo sich komprimiertes Gas und aufgewärmter Staub mischen.

Die Supernova wurde durch einen Kollaps im massereichen Sterneninneren ausgelöst. Ihr Licht erreichte die Erde vor etwa 3700 Jahren. Der Supernovaüberrest Puppis A ist weiterhin eine starke Quelle am Röntgenhimmel.

Zur Originalseite

Kosmischer Krebsnebel

Zwischen gleichmäßig verteilten Sternen leuchtet der planetarische Nebel M1. Er ist eine längliche, lebhafte Wolke, die am Rand rötlich und innen weiß leuchtet.

Bildcredit: NASA, Chandra-Röntgenobservatorium, SAO, DSS

Der Krebs-Pulsar ist ein magnetischer Neutronenstern. Er ist so groß wie eine Stadt und rotiert 30 Mal pro Sekunde um seine Achse. Der Pulsar befindet sich in der Mitte des Krebsnebels, der auf diesem Weitwinkelbild dargestellt ist. Der Supernovaüberrest liegt in unserer Milchstraße.

Das Kompositbild entstand aus optischen Übersichtsdaten und Röntgendaten des Chandra-Observatoriums im Orbit. Es wurde zur 15-Jahres-Feier von Chandras Erforschung des Hochenergie-Kosmos veröffentlicht.

Wie ein kosmischer Dynamo liefert der Pulsar die Energie für die Emissionen im Röntgenbereich und im sichtbaren Licht des Nebels. Dazu beschleunigt er geladene Teilchen auf extreme Energien und erzeugt so die Strahlen und Ringe, die im Röntgenlicht leuchten. Die innerste Ringstruktur ist etwa ein Lichtjahr groß.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern des massereichen Sterns, der explodierte. Der Nebel besteht aus den Überresten der äußeren Schichten des Sterns, die sich ausdehnen. Die Supernovaexplosion wurde im Jahr 1054 beobachtet.

Zur Originalseite

Supernovaüberrest SN 1006

Vor einem Hintergrund aus kleinen, relativ dicht verteilten Sternen breitet sich eine Blase aus. Sie wirkt ein bisschen fluffig, der Rand erinnert an eine Seifenblase.

Bildcredit: NASA, ESA, Zolt Levay (STScI)

1006 n. Chr. blitzte am Himmel des Planeten Erde ein neuer Stern auf. Er war die vielleicht hellste Supernova seit Beginn der Geschichtsaufzeichnung. Die Trümmerwolke der Sternexplosion dehnt sich aus. Sie befindet sich im südlichen Sternbild Wolf. Noch heute veranstaltet sie eine kosmische Lichtschau im ganzen elektromagnetischen Spektrum.

Das Kompositbild zeigt Röntgendaten des Chandra-Observatoriums in Blau. Optische Daten sind in gelblichen Farbtönen und Radiodaten sind rot dargestellt. Die Trümmer sind heute als Supernovaüberrest SN 1006 bekannt. Die Wolke hat einen Durchmesser von etwa 60 Lichtjahren. Sie stammt vermutlich von einem Weißen Zwergstern.

Der kompakte Weiße Zwerg ist Teil eines Doppelsternsystems. Er zog allmählich Materie von seinem Begleitstern ab. Die Ansammlung an Masse löste später eine thermonukleare Explosion aus, die den Weißen Zwerg zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit ereignete sich die Explosion 7000 Jahre vor 1006, als das Licht die Erde erreichte. Stoßwellen im Überrest beschleunigen die Teilchen auf extreme Energien. Sie sind vermutlich eine Quelle der rätselhaften kosmischen Strahlung.

Zur Originalseite

Am westlichen Schleier

Im querformatigen Bild sind wild strukturierte Nebelfetzen verteilt. Sie leuchten blau und rot, was ihrer Zusammensetzung entspricht (Wasserstoff und Sauerstoff). Im Bild sind der Hexenbesen und Pickerings Dreieck zu sehen.

Bildbearbeitung: Oliver CzernetzDaten: Digitized Sky Survey (POSS-II)

Diese zarten Fasern aus komprimiertem leuchtendem Gas sind im Sternbild Schwan (Cygnus) drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest. Das ist eine sich ausdehnende Wolke, die bei der finalen Explosion eines massereichen Sterns entstand.

Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren. Bei dem heftigen Ereignis entstand eine interstellare Stoßwelle. Sie pflügt durch den Weltraum. Dabei fegt die Stoßwelle interstellare Materie auf und bringt sie zum Leuchten. Die glimmenden Fasern sind eigentlich lange Wellen in einer Hülle, die wir von der Seite sehen. Die Hüllen sind in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün) getrennt.

Der Schleiernebel ist auch als Cygnus-Schleife bekannt. Er ist fast 3 Grad oder 6 Vollmonddurchmesser breit. Das entspricht in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahren. Das breite Bild zeigt die westliche Hälfte des Schleiernebels. Hellere Teile im Schleier gelten als eigene Nebel. Dazu gehören der Hexenbesen (NGC 6960) oben und Pickerings Dreieck (NGC 6979) rechts unten. Anm.: Es ist auch als Williamina Flemings dreieckiges Büschel bekannt.

Zur Originalseite