Woher kommen Elemente?

Das Bild zeigt das Periodensystem der Elemente. Die Farben zeigen ihre vermutete Entstehung.

Bildcredit: Cmglee (eigene Arbeit) CC BY-SA 3.0 oder GFDL, via Wikimedia Commons

In jedem Wassermolekül in eurem Körper befindet sich Wasserstoff. Er stammt vom Urknall. Im Universum gibt es keine anderen nennenswerten Quellen für Wasserstoff. Der Kohlenstoff in eurem Körper entstand durch Kernfusion im Inneren von Sternen. Auch der Sauerstoff ist so entstanden. Das meiste Eisen in eurem Körper entstand in Supernovae von Sternen. Sie traten vor langer Zeit in weiter Ferne auf.

Das Gold in eurem Schmuck entstand wahrscheinlich bei Kollisionen von Neutronensternen. Sie waren vielleicht als kurze Gammablitze sichtbar. Elemente wie Phosphor und Kupfer sind in unseren Körpern nur in Spuren vorhanden. Sie sind aber lebenswichtig für die Funktion alles bekannten Lebens.

Die Farben des Periodensystems zeigen eine Vermutung, wo alle bekannten Elemente entstanden sind. Die Orte der nuklearen Entstehung von Elementen wie Kupfer sind nicht genau bekannt. Es wird weiterhin durch Beobachtung und Berechnung erforscht.

Ö1-Nachtquartier „In den Himmel schauen und staunen“

Zur Originalseite

SN Refsdal: Das erste vorhergesagte Supernovabild

Die Kreise im Bild markieren Stellen, an denen eine Supernova auftauchte, nachdem ihr Licht von einer Gravitationslinse in mehrere Bilder aufgespalten wurde.

Bildcredit: NASA, ESA und S. Rodney (JHU) und das FrontierSN-Team; T. Treu (UCLA), P. Kelly (UC Berkeley) und das GLASS-Team; J. Lotz (STScI) und das Frontier Fields Team; M. Postman (STScI) und das CLASH-Team; weiters: Z. Levay (STScI)

Sie ist zurück. Noch nie zuvor wurde die Beobachtung einer Supernova vorhergesagt. Es war ein einzigartiges astronomisches Ereignis und trat im Feld des Galaxienhaufens MACS J1149.5+2223 auf.

Die meisten hellen Flecken im Bild sind Galaxien im Haufen. Die aktuelle Supernova hat die Bezeichnung Supernova Refsdal. Sie ereignete sich nur einmal im fernen Universum, und zwar weit hinter diesem massereichen Galaxienhaufen. Die Gravitation führt dazu, dass sich der Haufen wie eine massereiche Gravitationslinse verhielt. Er spaltete das Bild der Supernova Refsdal in mehrere helle Bilder auf.

Eines dieser Bilder erreichte die Erde vor etwa zehn Jahren. Es ist wahrscheinlich im oberen roten Kreis dargestellt. Leider wurde es verpasst. Vier weitere helle Bilder erreichten im April ihre größte Helligkeit im unteren roten Kreis. Sie sind als erste Einsteinkreuz-Supernova um eine massereiche Galaxie im Haufen verteilt.

Doch da war noch mehr. Untersuchungen zeigten, dass wahrscheinlich noch ein sechstes helles Supernovabild auf dem Weg zur Erde war. Es würde wahrscheinlich im nächsten Jahr ankommen.

Anfang des Monats wurde dieses sechste helle Bild geborgen. Es erschien pünktlich im mittleren roten Kreis, wie es vorhergesagt worden war. Wenn wir solche Bildfolgen untersuchen, verstehen wir besser, wie Materie in Galaxien und Galaxienhaufen verteilt ist. Das führt zu neuen Erkenntnissen, wie schnell das Universum expandiert und auf welche Weise massereiche Sterne explodieren.

Zur Originalseite

Supernova 1994D und das unerwartete Universum

Schräg im Bild ist eine düstere Galaxie. Ihr Kern ist hier violett-rosa abgebildet, nur das Zentrum leuchtet hell. Am Rand verlaufen dicke Staubbahnen. Links unten strahlt eine helle Supernova.

Bildcredit: High-Z Supernova Search Team, HST, NASA

Vor langer Zeit explodierte an einem fernen Ort ein Stern. Die Supernova 1994D ist der helle Fleck links unten. Sie explodierte am Rand der Galaxie NGC 4526. Die Supernova 1994D war interessant. Der Grund war nicht, dass sie sich stark von anderen Supernovae unterschied, sondern weil sie anderen Supernovae so ähnlich war. Das Licht, das in den Wochen nach der Explosion abgestrahlt wurde, klassifizierte sie als Supernova vom wohlbekannten Typ Ia.

Das Besondere an Typ-1a-Supernovae ist, dass alle dieselbe Leuchtkraft besitzen. Daher ist so eine Supernova umso weiter entfernt, je blasser sie erscheint. Die Beziehung zwischen Helligkeit und Entfernung wird genau kalibriert. So kann man nicht nur die Rate bestimmen, mit der sich das Universum ausdehnt (der Parameter dafür ist die Hubblekonstante), sondern auch die Geometrie des Universums, in dem wir leben (die Parameter dafür sind Omega und Lambda).

In den letzten Jahren wurde eine große Zahl weit entfernter Supernovae vermessen. Zusammen mit anderen Beobachtungen interpretiert man die Hinweise so, dass wir in einem unerwarteten Universum leben.

Zur Originalseite

Galaxie und Haufen erzeugen vier Bilder einer fernen Supernova

Das Bild ist voller Galaxien, die wie Sterne verteilt sind. Über einem hellen Stern ist eine Galaxie mit 4 gelben Flecken. Diese Flecken sind eine Supernova, deren Bild durch eine Gravitationslinse in vier Bilder aufgeteilt wurde.

Bildcredit: NASA, ESA und S. Rodney (JHU) und das FrontierSN-Team; T. Treu (UCLA), P. Kelly (UC Berkeley) und das GLASS-Team; J. Lotz (STScI) und das Frontier-Fields-Team; M. Postman (STScI) und das CLASH-Team; und Z. Levay (STScI)

Welche ungewöhnlichen Flecken umgeben diese Galaxie? Es sind Bilder ein- und derselben Supernova. Zum ersten Mal beobachtete man, wie die Masse einer Gravitationslinse, die zwischen uns und einer Supernova liegt, diese eine Supernovaexplosion ablenkte und in mehrere Bilder aufteilte. Die Massen, die das bewirkten, sind eine große Galaxie und der Galaxienhaufen, in dem sie sich befindet.

Das Bild entstand letzten November mit dem Weltraumteleskop Hubble im Erdorbit. Die gelbe Supernova Refsdal ist viermal abgebildet. Sie ereignete sich im frühen Universum weit hinter dem Haufen. Die Orte und die Zeitverzögerung zwischen den Supernovabildern werden vermessen. Mit diesen Messungen wollen Astrophysikerinnen* den Anteil an Dunkler Materie in der Galaxie und im Haufen bestimmen. Mit Geduld und Glück wird in den nächsten Jahren in der Nähe noch ein fünftes Bild der Supernova entdeckt.

Zur Originalseite

Die Grand-Design-Spiralgalaxie M100

Die Spiralgalaxie M100 im Haar der Berenike ist eine Grand-Design-Spiralgalaxie. Kennzeichen dieser Galaxiengruppe sind ausladende, prachtvolle Spiralgalaxien, eine relativ ebenmäßige Erscheinung und ausgeprägte junge Sternhaufen.

Bildcredit: Hubble-Vermächtnisarchiv, NASA, ESABearbeitung und Lizenz: Judy Schmidt

Die Galaxie M100 ist majestätisch in einem wahrhaft kosmischen Maßstab. Sie ist passenderweise als Grand-Design-Spiralgalaxie klassifiziert. Die große Galaxie besitzt mehr als 100 Milliarden Sterne und klar definierte Spiralarme. Sie ähnelt unserer Milchstraße.

M100 ist auch als NGC 4321 katalogisiert und eine der hellsten Galaxien im Virgo-Galaxienhaufen. Sie ist 56 Millionen Lichtjahre von uns entfernt und befindet sich im Sternbild Haar der Berenike (Coma Berenices). Dieses Bild von M100 entstand 2006 mit dem Weltraumteleskop Hubble. Es zeigt helle, blaue Sternhaufen und komplexe gewundene Staubbahnen. Beides sind Kennzeichen dieser Galaxienklasse.

Die Untersuchung veränderlicher Sterne in M100 spielte eine wichtige Rolle bei der Bestimmung von Größe und Alter des Universums. Wenn ihr genau wisst, wo ihr suchen müsst, findet ihr einen kleinen Fleck. Er ist das Lichtecho einer hellen Supernova. Sie wurde wenige Monate vor Aufnahme dieses Bildes entdeckt.

Zur Originalseite

M1: Der Krebsnebel

Mitten im Bild ist ein wolkiges Knäul mit vielen roten und blauen Fasern. Darum herum sind wenige schwach leuchtende Sterne verteilt.

Bildcredit und Bildrechte: Martin Pugh

Der Krebsnebel ist als M1 katalogisiert. Er ist also das erste Objekt auf Charles Messiers berühmter Liste aus dem 18. Jahrhundert von Dingen, die keine Kometen sind. Wir wissen heute, dass der Krebs die Trümmer einer Supernova sind. Er entstand nach der finalen Explosion eines massereichen Sterns. Die Supernova wurde 1054 beobachtet.

Diese scharfe, erdgebundene Teleskopansicht entstand aus Schmalbanddaten. Sie zeichnen die Emissionen ionisierter Sauerstoff- und Wasserstoffatome in Blau und Rot auf. So ist es leichter, die verschlungenen Fasern in der immer noch expandierenden Wolke zu erforschen.

Der Krebs-Pulsar ist ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Er ist eines der exotischsten Objekte, die zeitgenössische Forschende kennen. Man sieht ihn als hellen Fleck mitten im Nebel. Wie ein kosmischer Dynamo liefert der kollabierte Überrest des Sternkerns die Energie für das Leuchten der Krabbe im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist zirka 12 Lichtjahre groß. Seine Entfernung beträgt an die 6500 Lichtjahre. Man findet den Nebel im Sternbild Stier.

Zur Originalseite

SN 2014J schickt keine Röntgenstrahlen

Mitten im Bild leuchtet ein Nebel, er ist im Zentrum sehr hell und wird nach außen hin rötlich. Rechts neben der Mitte markiert ein weißer Kasten die Position der Supernova SN 2014J. Die Aufnahmen in Röntgenlicht vor und nach der Explosion sind in zwei Einschüben unten gezeigt.

Bildcredit: NASA / CXC / SAO / R. Margutti et al.

Im Jänner beobachteten Teleskope und Observatorien auf der ganzen Erde, wie die Helligkeit der Supernova SN 2014J in der nahen Galaxie M82 anstieg. Doch die vielleicht wichtigste Beobachtung gelang im Orbit. Dort sah das Röntgenobservatorium Chandra nämlich – nichts.

Die Explosion von SN 2014J wurde als Typ-Ia-Supernova klassifiziert. Man dachte, ein Weißer Zwerg hätte stetig Materie von einem Begleitstern abgezogen. Dieser Zuwachs hätte schließlich die Supernova gezündet. Zu diesem Modell gehört Röntgenstrahlung. Sie entsteht, wenn die Druckwelle der Supernova auf die übrige Materie in der Umgebung des Weißen Zwergs trifft.

Doch bei der Supernova SN 2014J war keine Röntgenstrahlung zu messen. Chandras Falschfarben-Röntgenbild der Galaxie M82 zeigt zwei großteils leeren Nahaufnahmen der Position der Supernova. Sie sind in den Einschüben „Pre“ (vorher) und „Post“ (nachher) abgebildet. Nach dem überraschenden Mangel an Röntgenstrahlung von SN 2014J werden neue Modelle entwickelt. Sie sollen klären, was die kosmische Explosion auslöste.

Zur Originalseite

Die Tarantelzone

Der rot leuchtende Tarantelnebel füllt fast das ganze Bild. Links über der Mitte ist sein Zentrum.

Bildcredit und Bildrechte: Marco Lorenzi

Der Tarantelnebel ist eine gewaltige Sternbildungsregion in unserer Nachbargalaxie, der Großen Magellanschen Wolke (GMW). Er ist größer als 1000 Lichtjahre. In der detailreichen farbigen Teleskopansicht befindet sich das kosmische Spinnentier links oben. Die Aufnahme entstand aus Breit- und Schmalbandfiltern.

Das Bild ist am Himmel fast 2 Grad breit (4 Vollmonde). Es reicht über einen mehr als 8000 Lichtjahre großen Bereich in der GMW. Der zentrale junge Haufen mit massereichen Sternen in der Tarantel (NGC 2070) ist als R136 katalogisiert. Darin liefern intensive Strahlung, Sternwinde und Supernova-Stoßwellen die Energie für das Leuchten des Nebels. Sie formen auch die spinnenartigen Fasern.

Um die Tarantel sind weitere stürmische Sternbildungsregionen mit jungen Sternhaufen, Fasern und blasenförmigen Wolken verteilt. Das Sichtfeld zeigt außerdem den Schauplatz der nächstgelegenen Supernova in jüngster Zeit. Es ist SN 1987A über der Mitte. Das reiche Sternfeld liegt im südlichen Sternbild Schwertfisch (Dorado).

Zur Originalseite