Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Gerüchte über ein dunkles Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: High-Z Supernova Search Team, HST, NASA

Beschreibung: Vor 21 Jahren wurden erstmals Ergebnisse vorgestellt, die Hinweise lieferten, dass sich ein Großteil der Energie unseres Universums nicht in Sternen oder Galaxien befindet, sondern an den Raum selbst gebunden ist. Nach Ansicht der Kosmologen setzten neue Beobachtungen ferner Supernovae eine große kosmologische Konstante – Dunkle Energie – voraus.

Die Idee einer kosmologischen Konstante war nicht neu – es gibt sie seit Beginn der heutigen relativistischen Kosmologie. Solche Annahmen waren jedoch in der Regel nicht sehr verbreitet, weil die Dunkle Energie so anders war als die bekannten Bestandteile des Universums, außerdem schien die Menge an Dunkler Energie durch andere Beobachtungen begrenzt, und weniger seltsame Kosmologien hatten die Daten bis dahin ohne eine beträchtliche Menge an Dunkler Energie gut erklärt.

Das Besondere war hier die offenbar direkte und zuverlässige Beobachtungsmethode sowie der gute Ruf der Wissenschaftler, welche die Untersuchungen durchführen. Im Laufe von zwei Jahrzehnten sammelten unabhängige Arbeitsgruppen von Astronominnen und Astronomen weiterhin Daten, welche die Existenz Dunkler Energie und die das verstörende Ergebnis eines derzeit beschleunigt expandierenden Universums zu bestätigen scheinen.

2011 erhielten die Arbeitsgruppenleiter für ihre Arbeit den Nobelpreis für Physik. Dieses Bild einer Supernova, die 1994 in den Außenbereichen einer Spiralgalaxie zu beobachten war, wurde von einer dieser Forschungsgruppen aufgenommen.

Neu: APOD ist nun via Facebook in Hindi verfügbar.

Zur Originalseite

Die expandierenden Echos der Supernova 1987A


Videocredit und -rechte: David Malin, AAT

Beschreibung: Erkennen Sie die Supernova 1987A? Es ist nicht schwierig – sie ereignete sich in der Mitte der expandierenden Zielscheibe. Die Sternexplosion wurde 1987 erstmals beobachtet, doch das Licht der SN 1987A wurde weiterhin von interstellaren Staubklumpen reflektiert und gelangte noch viele Jahre später zu uns. Diese Lichtechos wurden zwischen 1988 und 1992 mit dem Anglo Australian Telescope (AAT) in Australien erfasst und wandern auf dieser Zeitrafferaufnahme von der Position der Supernova auswärts.

Um diese Bilder zu erstellen, wurde ein Bild der Großen Magellanschen Wolke, das vor der Ankunft des Supernovalichtes aufgenommen wurde, von späteren GMW-Bildern abgezogen, die bereits das Supernova-Echo enthielten. Weitere bedeutende Lichtecho-Sequenzen wurden im Rahmen der Himmelsüberwachungsprojekte EROS2 und SuperMACHO aufgenommen. Untersuchungen expandierender Lichtechtringe um andere Supernovae ermöglichten eine genauere Bestimmung von Ort, Zeit und Symmetrie dieser gewaltigen Sternexplosionen.

Gestern war der 32. Jahrestag der SN 1987A, der letzten dokumentierten Supernova in und um unsere Milchstraße und der letzten, die mit bloßem Auge sichtbar war.

Offene Wissenschaft: Stöbern Sie in mehr als 1800+ Codes der Astrophysics Source Code Library

Zur Originalseite

Der verlorene Stern Eta Carinae

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Beschreibung: Eta Carinae könnte jederzeit explodieren. Doch niemand weiß, wann – es könnte nächstes Jahr sein – oder in einer Million Jahre. Die Masse von Eta Carinae beträgt etwa 100 Sonnenmassen und macht ihn zu einem ausgezeichneten Kandidaten für eine voll entfaltete Supernova.

Historische Aufzeichnungen zeigen, dass Eta Carinae vor etwa 170 Jahren einen ungewöhnlichen Ausbruch hatte, der ihn zu einem der hellsten Sterne am südlichen Himmel machte. Eta Carinae im Schlüssellochnebel ist der einzige Stern, bei dem man derzeit vermutet, dass er natürliches Laserlicht abstrahlt. Dieses Bild bringt Details im ungewöhnlichen Nebel zum Vorschein, der diesen gefährlichen Stern umgibt.

Im Zentrum von Eta Carinae entspringen Lichtkreuze in Form heller, vielfarbiger Streifen, die durch das Teleskop verursacht werden. Die zwei getrennten Lappen des Homunkulusnebels umschließen die heiße Zentralregion, einige seltsame strahlenförmige Schlieren in Rot verlaufen sternförmig nach rechts. Die Lappen sind mit Spuren von Gas und Staub gefüllt und absorbieren das blaue und das ultraviolette Licht, das nahe der Mitte abgestrahlt wird. Die Schlieren bleiben rätselhaft.

Zur Originalseite

Tychos Supernovaüberrest in Röntgenlicht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA / CXC / F.J. Lu (Chinese Academy of Sciences) et al.

Beschreibung: Welcher Stern erzeugte diesen riesigen Bovisten? Hier ist der heiße, expandierende Nebel von Tychos Supernovaüberrest abgebildet. Er ist das Ergebnis einer Sternexplosion, die vor mehr als 400 Jahren von dem berühmten Astronomen Tycho Brahe beschrieben wurde. Dieses Bild ist ein Komposit in drei Röntgen-Spektralfarben, die mit dem Röntgenobservatorium Chandra im Orbit aufgenommen wurden.

Die expandierende Gaswolke ist extrem heiß, und die leicht unterschiedlichen Ausdehnungsraten verleihen der Wolke eine bauschige Erscheinung. Der Stern, der die Supernova SN 1572 erzeugte, wurde wahrscheinlich gänzlich aufgelöst, doch ein Stern mit dem Spitznamen Tycho G, der zu blass ist, um ihn hier zu erkennen, war vermutlich sein Begleiter. Überreste des Vorläufers von Tychos Supernova zu finden ist wichtig, da es eine Supernova vom Typ Ia war. Diese sind eine wichtige Sprosse der Entfernungsleiter, welche die Größenordnung des sichtbaren Universums kalibriert. Der Helligkeitshöhepunkt von Typ-Ia-Supernovae gilt als gut erforscht, weshalb sie bei der Erforschung des Zusammenhangs zwischen Blässe und Entfernung im fernen Universum ziemlich wertvoll sind.

Zur Originalseite

Walfischgalaxien und Supernova

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Massimiliano Veschini

Beschreibung: Auf dieser kosmischen Ansicht im Wasser bewohnenden Sternbild Cetus schließt sich die große Spiralgalaxie NGC 1055 links oben der Spirale Messier 77 rechts unten an. Die schmale staubige Erscheinung der Spiralgalaxie NGC 1055, die von der Seite sichtbar ist, steht in hübschem Kontrast zu der Aufsicht auf den hellen Kern und die Spiralarme von M77. Beide sind größer als 100.000 Lichtjahre und markante Mitglieder einer kleinen, ungefähr 60 Millionen Lichtjahre entfernten Galaxiengruppe. In dieser geschätzten Entfernung ist M77 eines der fernsten Objekte in Charles Messiers Katalog und mindestens 500.000 Lichtjahre von seinem Begleituniversum NGC 1055 entfernt.

Das Sichtfeld ist am Himmel ungefähr so groß wie der Vollmond und enthält auch farbenprächtige Sterne im Vordergrund der Milchstraße sowie noch weiter entfernte Hintergrundgalaxien. Dieses scharfe Bild wurde am 28. November aufgenommen und zeigt auch die neu entdeckte Supernova SN2018ivc, ihre Position in den Armen von M77 ist markiert. Das Licht der Explosion eines der massereichen Sterne in M77 wurde nur wenige Tage zuvor am 24. November mit Teleskopen auf dem Planeten Erde entdeckt.

Update zum 5. Dezember 2018 – deutsche Grafik mit Ereignissen in Europa

Zur Originalseite

Cygnus Hülle Supernovaüberrest W63

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: J-P Metsavainio (Astro Anarchy)

Beschreibung: Der Geist eines längst toten Sterns, der Supernovaüberrest W63, leuchtet wie ein blasser kosmischer Rauchring in der Ebene der Milchstraße im nördlichen Sternbild Schwan (Cygnus). Seine gespenstische Erscheinung ist vor dem reichen Komplex aus interstellaren Wolken und Staub in der Region von einem schaurigen blauen Leuchten umrissen.

Das schöne Bild umfasst am Himmel mehr als vier Vollmonde, es ist ein Teleskopmosaik aus zwölf Bildfeldern, die 100 Stunden Belichtungszeit mit Schmalbandfiltern kombinieren. Es zeigt das charakteristische Licht ionisierter Schwefel-, Wassrstoff- und Sauerstoffatome in roten, grünen und blauen Farbtönen. Der sichtbare Teil der immer noch expandierenden Hülle der Supernova ist mehr als 5000 Lichtjahre entfernt und um die 150 Lichtjahre groß. Bisher wurde keine Quelle mit den Überbleibseln des Originalsterns von W63 in Verbindung gebracht. Das Licht der Supernovaexplosion des Sterns hat die Erde vermutlich vor mehr als 15.000 Jahren erreicht.

Zur Originalseite

NGC 613 mit Staub, Sternen und einer Supernova

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, S. Smartt (QUB); Danksagung: Robert Gendler; Einschübe: Victor Buso

Beschreibung: Woher kommt dieser Fleck? Der Hobbyastronom Victor Buso testete 2016 gerade eine neue Kamera auf seinem Teleskop, als er beobachtete, wie ein seltsamer Lichtfleck erschien – und blieb. Nach Meldung dieser ungewöhnlichen Beobachtung wurde dieser Fleck als Licht einer Supernova erkannt, die soeben sichtbar wurde – in einem früheren Stadium, als je zuvor visuell fotografiert wurde.

Die Vorher-Nachher-Bilder der Entdeckung wurden ungefähr im Abstand einer Stunde fotografiert. Sie sind als Einschub in ein detailreicheres Bild derselben Spiralgalaxie NGC 613 eingefügt, das mit dem Weltraumteleskop Hubble fotografiert wurde.

Nachfolgende Beobachtungen zeigten, dass SN 2016gkg wahrscheinlich die Explosion eines Überriesensterns war, und Buso fotografierte wahrscheinlich das Stadium, in dem die vom Sternkern nach außen wandernde Explosionswelle die Sternenoberfläche durchbrach. Da Astronomen seit Jahren versuchen, Supernovae in Galaxien aufzuspüren, ohne je so ein „Ausbruchsereignis“ zu entdecken, ist die Wahrscheinlichkeit, dass Buso ein solches fotografierte, mit einem Lottogewinn vergleichbar.

Zur Originalseite

Supernova hinter Galaxienstaub

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA und Hubble Heritage (STScI/AURA);
Bildeinschub: Howard Hedland und Dave Jurasevich, Las Campanas Obs.

Beschreibung: Teleskope auf der ganzen Welt beobachten eine helle Supernova in einer nahen, staubhaltigen Galaxie. Die mächtige Sternexplosion wurde zu Beginn des Monats entdeckt. Die nahe Galaxie ist die fotogene, mit Fernglas beobachtbare Centaurus A, die für ihr eindrucksvolles Band aus Licht absorbierendem Staub bekannt ist, das über die Mitte verläuft. Cen A ist hier auf einem hoch aufgelösten Archivbild des Weltraumteleskops Hubble dargestellt, mit einem Einschub, der eine erdgebundene Aufnahme der Supernova nur zwei Tage nach ihrer Entdeckung zeigt. Die Supernova mit der Bezeichnung SN2016adj, die links neben einem hellen Vordergrundstern in unserer Milchstraße liegt, ist im Einschub mit einem Fadenkreuz markiert. Derzeit vermutet man, dass es sich um eine Typ IIbSupernova handelt, bei der der stellare Kern kollabiert. Sehr interessant daran ist, dass sie so nahe liegt und durch ein bekanntes Staubband zu sehen ist. Aktuelle und künftige Beobachtungen dieser Supernova liefern vielleicht neue Hinweise auf das Schicksal massereicher Sterne und die Entstehung mancher Elemente, die sich auf unserer Erde befinden.

Zur Originalseite

Die Große Wolke des Magellan

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: L. Comolli, L. Fontana, G. Ghioldi und E. Sordini

Beschreibung: Im 16. Jahrhundert hatten der portugiesische Seefahrer Ferdinand Magellan und seine Besatzung viel Zeit, um bei der ersten Weltumsegelung den südlichen Sternenhimmel zu beobachten. Seither sind zwei verschwommene, wolkenähnliche Objekte, die auf der Südhalbkugel leicht sichtbar sind, unter Himmelsbeobachtern als die Magellanschen Wolken bekannt, die nun als Begleitgalaxien unserer viel größeren Milchstraßen-Spiralgalaxie betrachtet werden.

Die Große Magellansche Wolke (GMW), etwa 160.000 Lichtjahre entfernt im Sternbild Schwertfisch (Dorado), ist hier auf einem bemerkenswert detailreichen, farbenprächtigen und beschrifteten Kompositbild zu sehen.

Mit einem Durchmesser von etwa 15.000 Lichtjahren ist sie die massereichste der Begleitgalaxien der Milchstraße und enthält die nächstgelegene Supernova der jüngsten Vergangenheit, SN 1987A. Der markante Fleck links der Mitte trägt die Bezeichnung 30 Doradus, auch bekannt als der prachtvolle Tarantelnebel und ist eine gewaltige Sternbildungsregion mit einem Durchmesser von etwa 1000 Lichtjahren.

Zur Originalseite

Dämmerung vor der Nova

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Bildrechte: Mark A. Garlick (Space-art.co.uk)

Beschreibung: Wird diese Dämmerung eine weitere Nova bringen? Vielleicht denken eines Tages Menschen in der Zukunft, die auf einem Planeten eines eruptiv veränderlichen Doppelsternsystems über solche Ungewissheiten nach.

Bei eruptiv veränderlichen Sternen fällt Gas von einem großen Stern in eine Akkretionsscheibe, die einen massereiche, kompakten weißen Zwergstern umkreist. Explosive veränderliche Ereignisse wie eine Zwergnova finden statt, wenn ein Klumpen Gas im Inneren der Akkretionsscheibe über eine bestimmte Temperatur erhitzt wird. Dann fällt der Klumpen schneller auf den weißen Zwerg und landet mit einem hellen Blitz.

Solche Zwergnovae zerstören keinen der beiden Sterne und könnten in unregelmäßig in Zeitabständen von wenigen Tagen bis zu zehn Jahren stattfinden. Eine Nova ist zwar viel energieärmer als eine Supernova – wenn periodische Novae nicht heftig genug sind, um mehr Gas abzustoßen als einfällt, dann sammelt sich die Masse auf dem weißen Zwerg an, bis sie die Chandrasekhar-Grenze überschreitet. Zu diesem Zeitpunkt würde eine Höhle im Vordergrund wenig Schutz bieten, da der gesamte weiße Zwerg als gewaltige Supernova explodiert.

Zur Originalseite