Die expandierenden Echos der Supernova 1987A


Videocredit und -rechte: David Malin, AAT

Beschreibung: Erkennen Sie die Supernova 1987A? Es ist nicht schwierig – sie ereignete sich in der Mitte der expandierenden Zielscheibe. Die Sternexplosion wurde 1987 erstmals beobachtet, doch das Licht der SN 1987A wurde weiterhin von interstellaren Staubklumpen reflektiert und gelangte noch viele Jahre später zu uns. Diese Lichtechos wurden zwischen 1988 und 1992 mit dem Anglo Australian Telescope (AAT) in Australien erfasst und wandern auf dieser Zeitrafferaufnahme von der Position der Supernova auswärts.

Um diese Bilder zu erstellen, wurde ein Bild der Großen Magellanschen Wolke, das vor der Ankunft des Supernovalichtes aufgenommen wurde, von späteren GMW-Bildern abgezogen, die bereits das Supernova-Echo enthielten. Weitere bedeutende Lichtecho-Sequenzen wurden im Rahmen der Himmelsüberwachungsprojekte EROS2 und SuperMACHO aufgenommen. Untersuchungen expandierender Lichtechtringe um andere Supernovae ermöglichten eine genauere Bestimmung von Ort, Zeit und Symmetrie dieser gewaltigen Sternexplosionen.

Gestern war der 32. Jahrestag der SN 1987A, der letzten dokumentierten Supernova in und um unsere Milchstraße und der letzten, die mit bloßem Auge sichtbar war.

Offene Wissenschaft: Stöbern Sie in mehr als 1800+ Codes der Astrophysics Source Code Library

Zur Originalseite

Der verlorene Stern Eta Carinae

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Beschreibung: Eta Carinae könnte jederzeit explodieren. Doch niemand weiß, wann – es könnte nächstes Jahr sein – oder in einer Million Jahre. Die Masse von Eta Carinae beträgt etwa 100 Sonnenmassen und macht ihn zu einem ausgezeichneten Kandidaten für eine voll entfaltete Supernova.

Historische Aufzeichnungen zeigen, dass Eta Carinae vor etwa 170 Jahren einen ungewöhnlichen Ausbruch hatte, der ihn zu einem der hellsten Sterne am südlichen Himmel machte. Eta Carinae im Schlüssellochnebel ist der einzige Stern, bei dem man derzeit vermutet, dass er natürliches Laserlicht abstrahlt. Dieses Bild bringt Details im ungewöhnlichen Nebel zum Vorschein, der diesen gefährlichen Stern umgibt.

Im Zentrum von Eta Carinae entspringen Lichtkreuze in Form heller, vielfarbiger Streifen, die durch das Teleskop verursacht werden. Die zwei getrennten Lappen des Homunkulusnebels umschließen die heiße Zentralregion, einige seltsame strahlenförmige Schlieren in Rot verlaufen sternförmig nach rechts. Die Lappen sind mit Spuren von Gas und Staub gefüllt und absorbieren das blaue und das ultraviolette Licht, das nahe der Mitte abgestrahlt wird. Die Schlieren bleiben rätselhaft.

Zur Originalseite

Tychos Supernovaüberrest in Röntgenlicht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA / CXC / F.J. Lu (Chinese Academy of Sciences) et al.

Beschreibung: Welcher Stern erzeugte diesen riesigen Bovisten? Hier ist der heiße, expandierende Nebel von Tychos Supernovaüberrest abgebildet. Er ist das Ergebnis einer Sternexplosion, die vor mehr als 400 Jahren von dem berühmten Astronomen Tycho Brahe beschrieben wurde. Dieses Bild ist ein Komposit in drei Röntgen-Spektralfarben, die mit dem Röntgenobservatorium Chandra im Orbit aufgenommen wurden.

Die expandierende Gaswolke ist extrem heiß, und die leicht unterschiedlichen Ausdehnungsraten verleihen der Wolke eine bauschige Erscheinung. Der Stern, der die Supernova SN 1572 erzeugte, wurde wahrscheinlich gänzlich aufgelöst, doch ein Stern mit dem Spitznamen Tycho G, der zu blass ist, um ihn hier zu erkennen, war vermutlich sein Begleiter. Überreste des Vorläufers von Tychos Supernova zu finden ist wichtig, da es eine Supernova vom Typ Ia war. Diese sind eine wichtige Sprosse der Entfernungsleiter, welche die Größenordnung des sichtbaren Universums kalibriert. Der Helligkeitshöhepunkt von Typ-Ia-Supernovae gilt als gut erforscht, weshalb sie bei der Erforschung des Zusammenhangs zwischen Blässe und Entfernung im fernen Universum ziemlich wertvoll sind.

Zur Originalseite

Walfischgalaxien und Supernova

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Massimiliano Veschini

Beschreibung: Auf dieser kosmischen Ansicht im Wasser bewohnenden Sternbild Cetus schließt sich die große Spiralgalaxie NGC 1055 links oben der Spirale Messier 77 rechts unten an. Die schmale staubige Erscheinung der Spiralgalaxie NGC 1055, die von der Seite sichtbar ist, steht in hübschem Kontrast zu der Aufsicht auf den hellen Kern und die Spiralarme von M77. Beide sind größer als 100.000 Lichtjahre und markante Mitglieder einer kleinen, ungefähr 60 Millionen Lichtjahre entfernten Galaxiengruppe. In dieser geschätzten Entfernung ist M77 eines der fernsten Objekte in Charles Messiers Katalog und mindestens 500.000 Lichtjahre von seinem Begleituniversum NGC 1055 entfernt.

Das Sichtfeld ist am Himmel ungefähr so groß wie der Vollmond und enthält auch farbenprächtige Sterne im Vordergrund der Milchstraße sowie noch weiter entfernte Hintergrundgalaxien. Dieses scharfe Bild wurde am 28. November aufgenommen und zeigt auch die neu entdeckte Supernova SN2018ivc, ihre Position in den Armen von M77 ist markiert. Das Licht der Explosion eines der massereichen Sterne in M77 wurde nur wenige Tage zuvor am 24. November mit Teleskopen auf dem Planeten Erde entdeckt.

Update zum 5. Dezember 2018 – deutsche Grafik mit Ereignissen in Europa

Zur Originalseite

Cygnus Hülle Supernovaüberrest W63

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: J-P Metsavainio (Astro Anarchy)

Beschreibung: Der Geist eines längst toten Sterns, der Supernovaüberrest W63, leuchtet wie ein blasser kosmischer Rauchring in der Ebene der Milchstraße im nördlichen Sternbild Schwan (Cygnus). Seine gespenstische Erscheinung ist vor dem reichen Komplex aus interstellaren Wolken und Staub in der Region von einem schaurigen blauen Leuchten umrissen.

Das schöne Bild umfasst am Himmel mehr als vier Vollmonde, es ist ein Teleskopmosaik aus zwölf Bildfeldern, die 100 Stunden Belichtungszeit mit Schmalbandfiltern kombinieren. Es zeigt das charakteristische Licht ionisierter Schwefel-, Wassrstoff- und Sauerstoffatome in roten, grünen und blauen Farbtönen. Der sichtbare Teil der immer noch expandierenden Hülle der Supernova ist mehr als 5000 Lichtjahre entfernt und um die 150 Lichtjahre groß. Bisher wurde keine Quelle mit den Überbleibseln des Originalsterns von W63 in Verbindung gebracht. Das Licht der Supernovaexplosion des Sterns hat die Erde vermutlich vor mehr als 15.000 Jahren erreicht.

Zur Originalseite

NGC 613 mit Staub, Sternen und einer Supernova

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, S. Smartt (QUB); Danksagung: Robert Gendler; Einschübe: Victor Buso

Beschreibung: Woher kommt dieser Fleck? Der Hobbyastronom Victor Buso testete 2016 gerade eine neue Kamera auf seinem Teleskop, als er beobachtete, wie ein seltsamer Lichtfleck erschien – und blieb. Nach Meldung dieser ungewöhnlichen Beobachtung wurde dieser Fleck als Licht einer Supernova erkannt, die soeben sichtbar wurde – in einem früheren Stadium, als je zuvor visuell fotografiert wurde.

Die Vorher-Nachher-Bilder der Entdeckung wurden ungefähr im Abstand einer Stunde fotografiert. Sie sind als Einschub in ein detailreicheres Bild derselben Spiralgalaxie NGC 613 eingefügt, das mit dem Weltraumteleskop Hubble fotografiert wurde.

Nachfolgende Beobachtungen zeigten, dass SN 2016gkg wahrscheinlich die Explosion eines Überriesensterns war, und Buso fotografierte wahrscheinlich das Stadium, in dem die vom Sternkern nach außen wandernde Explosionswelle die Sternenoberfläche durchbrach. Da Astronomen seit Jahren versuchen, Supernovae in Galaxien aufzuspüren, ohne je so ein „Ausbruchsereignis“ zu entdecken, ist die Wahrscheinlichkeit, dass Buso ein solches fotografierte, mit einem Lottogewinn vergleichbar.

Zur Originalseite

GW170817: Spektakuläre Verschmelzung in mehreren Wellenlängen entdeckt

Erklärungsvideo-Credit: Bildgebungslabor der NASA

Bei einer explosiven Verschmelzung wurden erstmals kurz nacheinander Gravitationswellen und elektromagnetische Strahlung gemessen. Die Daten des Ausbruchs passen zur finalen Spirale, auf der zwei Neutronensterne in einem Binärsystem verschmelzen. Der explosionsartige Vorgang wurde am 17. August in der elliptischen Galaxie NGC 4993 beobachtet. Sie ist nur 130 Millionen Lichtjahre entfernt.

Erst wurden die Gravitationswellen beobachtet. Dabei kamen erstmals die Observatorien LIGO und Virgo auf der Erde zusammen zum Einsatz. Sekunden später maß das Fermi-Teleskop im Orbit Gammastrahlen. Ein paar Stunden später beobachteten Hubble und andere Observatorien Licht im ganzen elektromagnetischen Spektrum.

Dieses Erklärvideo zeigt den wahrscheinlichen Ablauf. Heiße Neutronensterne nähern sich auf spiralförmigen Bahnen. Dabei senden sie Gravitationswellen aus. Beim Verschmelzen bricht ein mächtiger Strahl hervor. Er stößt den kurzen Gammablitz aus. Dann werden Wolken ausgeworfen. Später folgt eine optische Art von Supernovae, die als Kilonova bezeichnet wird.

Erstmals passen die Entdeckungen zusammen. Sie bestätigen, dass LIGO-Ereignisse mit kurzen Gammablitzen einhergehen. Mächtige Verschmelzungen von Neutronensternen versorgten vermutlich das Universum mit vielen schweren Atomkernen. Dazu gehört Jod, das für Leben notwendig ist. Uran und Plutonium brauchen wir für Kernspaltung. Vielleicht habt ihr ein Andenken solcher Explosionen. Sie sind vermutlich auch die ursprüngliche Quelle von Gold.

Artikel von LIGO und LCO

Zur Originalseite

An der Quelle des Goldes

Zwei Himmelskörper sind vor einem dunklen Sternenhimmel dargestellt. Der obere ist dunkel mit goldenen Schlieren, der untere ist von einer strahlenden blauen Korona umgeben.

Illustrationscredit: Dana Berry, NASA

Woher kommt das Gold in eurem Schmuck? Das wissen wir nicht genau. Die durchschnittliche Menge an Gold im Sonnensystem ist anscheinend höher, als dass sie im frühen Universum, in Sternen und sogar bei typischen Supernovaexplosionen entstanden sein könnte.

Viele glauben, neutronenreiche schwere Elemente wie Gold sind am leichtesten bei den seltenen neutronenreichen Explosionen entstanden. So ein Ereignis wäre eine Kollision von Neutronensternen.

Diese künstlerische Illustration zeigt, wie zwei Neutronensterne auf einer spiralförmigen Bahn einander näher kommen. Kurz danach kollidieren sie. Kollisionen von Neutronensternen sind vielleicht der Ursprung kurzlebiger Gammastrahlenausbrüche. Vielleicht habt ihr schon ein Andenken an eine der mächtigsten Explosionen im Universum.

Hinweis: Das nächste APOD kommt während der Bekanntgabe einer NSF-Entdeckung mit Pressekonferenz am Montag.

Zur Originalseite