Koronaler Regen auf der Sonne

Videocredit: Solar Dynamics Observatory, SVS, GSFC, NASA; Musik: „Thunderbolt“ von Lars Leonhard

Regnet es auf der Sonne? Ja. Doch der Niederschlag ist kein Wasser, sondern extrem heißes Plasma. So ein Regen ereignete sich Mitte Juli 2012 nach einer Eruption auf der Sonne. Dabei traten ein koronaler Massenauswurf und eine mittelmäßige Sonneneruption auf.

Danach geschah etwas eher Ungewöhnliches: In der nahen Sonnenkorona wurde Plasma abgebildet, das abkühlte und zurückfiel. Dieses Phänomen wird koronaler Regen genannt. Wegen ihrer elektrischen Ladung wurden Elektronen, Protonen und Ionen im Regen entlang von bestehenden Magnetschleifen zierlich zur Sonnenoberfläche gelenkt. Die Szene wirkt wie ein surrealer, dreidimensionaler Wasserfall ohne Quelle.

Das überraschend ruhige Schauspiel ist in Ultraviolettlicht abgebildet. Es zeigt Materie, die mit einer Temperatur von etwa 50.000 Kelvin leuchtet. Jede Sekunde im Zeitraffervideo dauert in Echtzeit etwa 6 Minuten. Somit dauerte der ganze koronale Regenschauer an die 10 Stunden. Aktuelle Beobachtungen zeigen, dass so ein koronaler Regen auch in kleineren Schleifen auftreten und bis zu 30 Stunden dauern kann.

Zur Originalseite

Die losgelassene Sonne: Riesenfackel in Ultraviolett


Videocredit: NASA GSFC’s Scientific Visualization Studio, Solar Dynamics Obs.

Beschreibung: Einer der eindrucksvollsten Sonnenanblicke ist eine ausbrechende Eruption. Im Juni 2011 entließ die Sonne eine einigermaßen eindrucksvolle, mittelgroße Sonnenfackel, während durch die Rotation aktive Sonnenfleckenregionen zum Sonnenrand gelangten. Auf diese Fackel folgte jedoch ein gewaltiger Strom aus magnetisiertem Plasma. Die Aufnahme in extremem Ultraviolettlicht vom Ausbruch dieser Riesenfackel, die am Sonnenrand zu sehen ist, stammt vom Solar Dynamics Observatory der NASA.

Dieses Zeitraffervideo zeigt, wie bei dem stundenlangen Ereignis dunkles kühleres Plasma auf einen großen Bereich der Sonnenoberfläche herabregnet und sich entlang der unsichtbaren Magnetfeldlinien wölbt. In Verbindung damit wurde ein koronaler Massenauswurf – eine massereiche Wolke energiereicher Teilchen – Richtung Erde geschleudert, wo er zu einem Streifschuss des Erdmagnetfeldes führte.

Zur Originalseite

Der Polarlichtbaum

Hinter der dunklen Silhouette eines Baumes lodert ein Polarlicht in Form des Baumes.

Bildcredit und Bildrechte: Alyn Wallace Photography

Kann euer Baum das auch? Das Bild zeigt, wie die dunklen Zweige eines nahen Baumes mit dem hellen Leuchten eines fernen Polarlichts visuell überlagert wurden. Die Schönheit des Polarlichts ahmte einen Baum in der Nähe scheinbar nach. Es faszinierte den Fotografen, sodass er vorübergehend zu fotografieren vergaß.

Aus dem richtigen Blickwinkel betrachtet schien es, als hätte der Baum Blätter aus Polarlicht. Zum Glück kam er zu Sinnen, bevor das Polarlicht eine andere Form annahm. Er fotografierte die atemberaubende, flüchtige Überlagerung.

Polarlichter werden meist von energiereichen Elektronen ausgelöst, die von Sonneneruptionen stammen. Sie treffen in einer Höhe von etwa 150 Kilometern auf die Erdatmosphäre. Das ungewöhnliche Spiel zwischen Erde und Himmel wurde Anfang des Monats auf Island beobachtet.

Zur Originalseite

Sonneneruption einer schärferen Sonne

Die Sonne wirkt hier sehr dunkel. Aus ihrer Oberfläche dringen weißliche nebelige Strahlen, sie zeigen das Magnetfeld. In der Mitte leuchtet eine rot-violette aktive Region.

Bildcredit: Solar Dynamics Observatory/AIA, NASA; Bearbeitung: NAFE von Miloslav Druckmuller (Technische Universität Brünn)

Die aktive Sonnenregion AR2192 war die größte Gruppe an Sonnenflecken, die in den letzten 24 Jahren beobachtet wurde. Ehe sie Ende Oktober von der zur Erde gerichteten Sonnenseite wegrotierte, sorgte sie für sechs kolossale Sonnenausbrüche der Klasse X.

Diese Ansicht zeigt ihren intensivsten Ausbruch. Es wurde am 24. Oktober vom Solar Dynamics Observatory im Orbit aufgenommen. Die Szenerie ist eine Farbkombination aus Bildern, die in drei verschiedenen Wellenlängen des extremen Ultraviolettlichtes entstanden. 193 Ångström sind blau dargestellt, 171 Ångström leuchten weiß und 304 Ångström sind in Rot gezeigt.

Die Strahlung ionisierter Eisen- und Heliumatome folgt den Magnetfeldlinien. Sie schlingen sich durch das heiße Plasma der äußeren Chromosphäre und die Korona der Sonne. Darunter ist die kühlere Sonnenphotosphäre in extrem ultravioletten Wellenlängen abgebildet. Sie wirkt dunkel.

Das scharfe Kompositbild wurde mit dem neuen mathematischen Algorithmus NAFE bearbeitet. Der Algorithmus wird auf das Rauschen und die Helligkeit extrem ultravioletter Bilddaten angewendet. So werden kleine Details verstärkt.

Zur Originalseite

Polarlichtwesen über Norwegen

Über schaurigen Silhouetten von Bäumen schlingen sich detailreiche grüne und violette Polarlichter über den Himmel.

Bildcredit und Bildrechte: Ole C. Salomonsen (Arctic Light Photo)

Es war Halloween. Der Himmel sah aus, als wäre er lebendig. Welches Wesen das war, konnte der Astrofotograf nicht genau sagen. (Vielleicht habt ihr einen Vorschlag.) Klar ist, was die schaurige Erscheinung auslöste: eines der besten Polarlichter in jüngster Zeit.

Dieses spektakuläre Polarlicht war ungewöhnlich detailreich. Die lebhaft grünen und violetten Polarlichtfarben stammen von Sauerstoff– und Wasserstoffatomen hoch oben in der Atmosphäre, die auf einströmende Elektronen reagieren. Bäume im norwegischen Tromsø sorgten für einen schaurigen Vordergrund. Die aktuellen energiereichen Sonneneruptionen lösten viele weitere fotogene Polarlichter aus.

Zur Originalseite

Blaue Sonne explodiert

Für dieses Bild wurde die Sonne im extrem violetten Licht von Kalzium abgebildet, anschließend wurde das Bild farbinvertiert. Das verleiht der Sonne das Aussehen einer Heidelbeere.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Unsere Sonne ist keine gigantische Heidelbeere. Sie kann aber so dargestellt werden, dass sie der winzigen Frucht ähnlich sieht. Dazu bildet man sie in einer spezifischen Farbe des extremen Violettlichts ab. Dieses Licht wird als CaK bezeichnet. Es wird von ionisiertem Kalzium in der Sonnenatmosphäre abgestrahlt, das in sehr geringen Mengen vorkommt. Dann wird das Bild in Falschfarben umgekehrt.

Diese Sonnendarstellung ist wissenschaftlich interessant. Dabei tritt nämlich ein Kanal der Sonnenchromosphäre ziemlich markant hervor, in dem die Sonne eine rissige Oberfläche zeigt. Kühle Sonnenflecken erscheinen merklich heller. Die umgebenden heißen aktiven Regionen sind deutlich dunkler.

Die Sonne ist derzeit kurz vor dem Aktivitätsmaximum ihres 11 Jahre dauernden Zyklus. Letzte Woche stieß sie mächtige Eruptionen aus. In Zeiten hoher Aktivität können Ströme energiereicher Sonnenteilchen die Magnetosphäre der Erde treffen und spektakuläre Polarlichter auslösen.

Zur Originalseite

Vier Eruptionen der Klasse X

Die vier Bildfelder zeigen die sehr energiereiche Aktive Sonnenregion AR1748. Sie tauchte am östlichen Rand der Sonne auf und stieß bereits vier Sonnenfackeln der X-Klasse aus.

Bildcredit: NASA, Solar Dynamics Observatory, GSFC

Diese Sonnenfleckengruppe trägt die Bezeichnung Aktive Region AR1748. Sie tauchte am Montag am östlichen Rand der Sonne auf. In weniger als 48 Stunden erzeugte sie die ersten vier Sonnenfackeln der X-Klasse im Jahr 2013. Die vier Blitze wurden vom Solar Dynamics Observatory (SDO) in extremem Ultraviolettlicht aufgenommen. Sie sind von links oben ausgehend im Uhrzeigersinn zeitlich angeordnet.

Ausbrüche werden nach ihrer höchsten Helligkeit im Röntgenbereich gereiht. Demnach sind Fackeln der Klasse X die mächtigste Klasse. Sie gehen häufig mit koronalen Massenauswürfen (KMA) einher. Das sind gewaltige Wolken aus energiereichem Plasma, die in den Weltraum ausgestoßen werden. Die KMA der ersten drei Fackeln strömten nicht zur Erde. Doch der Ausbruch der vierten Eruption am 18. Mai könnte das Erdmagnetfeld streifen.

AR1748 könnte auch vorübergehende Radioausfälle verursachen. Sie ist wahrscheinlich noch nicht vorbei. Die aktive Region kann laut Prognose immer noch starke Eruptionen hervorrufen. Sie rotiert nun über die uns zugewandte Seite der Sonne in den direkten Sichtbereich.

Zur Originalseite

Fließende Polarlichter über Norwegen

Bildcredit und Bildrechte: Tor Even Mathisen; Musik: Per Wollen; Gesang: Silje Beate Nilssen

Beschreibung: Habt ihr schon einmal ein Polarlicht gesehen? Polarlichter treten wieder häufiger auf. Die Sonne war im Lauf der letzten Jahre ungewöhnlich ruhig, und so war auch die Zahl der von ihr verursachten Polarlichter ungewöhnlich gering. Doch in jüngerer Zeit wurde die Sonne wieder aktiver und präsentierte mehr Sonnenflecken, –fackeln und koronale Massenauswürfe.

Die aktive Sonne stößt typischerweise geladene Teilchen ins Sonnensystem aus, manche davon können Polarlichter auf der Erde auslösen. Diese Zeitrafferaufnahmen malerischer Nordlichter über Tromsø in Norwegen wurden im Laufe dieses Jahres gefilmt. Polarlichtschleier, die üblicherweise grün leuchten, fließen, schimmern und tanzen, wenn energiereiche Teilchen zur Erde strömen und die Luftmoleküle in der oberen Erdatmosphäre ionisieren.

Da das Sonnenmaximum erst kommt, habt ihr im Lauf der nächsten drei Jahre wahrscheinlich Gelegenheiten, selbst spektakuläre Polarlichter zu sehen.

Zur Originalseite