Eine gewaltige Tsunami-Stoßwelle auf der Sonne

Diese tsunami-ähnliche Stoßwelle auf der Sonne, die von der Aktiven Region AR 10930 ausging, ist als  Moreton-Welle bekannt.

Bildcredit: NSO/AURA/NSF und das USAF-Forschungslabor

So große Tsunamis gibt es nicht auf der Erde. 2006 erzeugte eine große Sonneneruption aus einem Sonnenfleck von der Größe der Erde eine tsunamiähnliche Stoßwelle, die sogar für die Sonne spektakulär war.

Das Optische Sonnenüberwachungs-Netzwerk (Optical Solar Patrol Network, OSPAN) in New Mexico (USA) erfasste diesen Tsunami, der von der Aktiven Region AR 10930 auswärts wanderte. Die Stoßwelle ist in der Wissenschaft als Moreton-Welle bekannt. Sie komprimierte und erhitzte Gase, darunter den Wasserstoff in der Photosphäre der Sonne, und verursachte ein kurzzeitiges helleres Leuchten. Dieses Bild wurde in einer sehr spezifischen roten Farbe aufgenommen, die ausschließlich von Wasserstoff abgestrahlt wird.

Der rasende Tsunami löschte einige aktive Filamente auf der Sonne aus, manche davon entstanden später neu. Der Sonnen-Tsunami breitete sich mit fast einer Million Kilometer pro Stunde aus und umkreiste die gesamte Sonne in wenigen Minuten.

Zur Originalseite

Ein Filament schießt aus der Sonne


Videocredit und -rechte: Stéphane Poirier

Beschreibung: Warum entweicht manchmal ein Teil der Sonnenatmosphäre ins All? Der Grund dafür liegt in den veränderlichen Magnetfeldern, die durch die Sonnenoberfläche verlaufen. In Regionen mit starkem Oberflächenmagnetismus, sogenannten aktiven Regionen, sind häufig dunkle Sonnenflecken anzutreffen.

Aktive Regionen können geladenes Gas entlang von gewölbten oder ausladenden Magnetfeldern kanalisieren. Dieses Gas fällt manchmal zurück, manchmal entweicht es, und manchmal trifft es sogar unsere Erde.

Dieses Zeitraffervideo zeigt die Entwicklung im Laufe einer Stunde, es wurde mit einem kleinen Teleskop in Frankreich aufgenommen und zeigt ein ausbrechendes Filament, das Ende letzten Monats von der Sonne aufstieg. Dieses Filament ist riesig: Zum Vergleich ist links oben die Größe der Erde abgebildet.

Kurz nachdem das Filament aufstieg, stieß die Sonne eine mächtige Fackel der X-Klasse aus, während ein gewaltiger Sonnen-Tsunami die Oberfläche erschütterte. Das Ergebnis war eine Wolke geladener Teilchen, die durch unser Sonnensystem rasten, unsere Erde aber großteils verfehlten – zumindest diesmal. Dennoch traf eine ausreichende Menge Sonnenplasma auf das Erdmagnetfeld, um ein paar blasse Polarlichter hervorzurufen.

Zur Originalseite

Ausbruch einer Sonnenprotuberanz von SDO


Videocredit und -rechte: NASA/Goddard/SDO AIA Team

Beschreibung: Eine der spektakulärsten Sonnenansichten ist eine ausbrechende Protuberanz. 2011 filmte die Raumsonde Solar Dynamics Observatory der NASA im Sonnenorbit eine eindruckvolle große Protuberanz, die auf der Oberfläche ausbrach. Die dramatische Explosion in diesem Zeitraffervideo wurde in Ultraviolettlicht gefilmt. Das Video komprimiert 90 Minuten, wobei alle 24 Sekunden ein neues Bild aufgenommen wurde.

Die Protuberanz ist riesig – unter den fließenden Schleier aus heißem Gas würde die ganze Erde leicht hineinpassen. Eine Sonnenprotuberanz wird vom Magnetfeld der Sonne kanalisiert und manchmal über der Sonnenoberfläche gehalten. Eine ruhige Protuberanz bleibt typischerweise etwa einen Monat bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen und heißes Gas ins Sonnensystem schleudern. Der Energie-Mechanismus, der eine Sonnenprotuberanz erzeugt, wird noch erforscht.

Wenn unsere Sonne das aktuelle Sonnenaktivitätsminimum passiert hat, treten in den nächsten Jahren Sonnenaktivitäten wie ausbrechende Protuberanzen voraussichtlich wieder häufiger auf.

Zur Originalseite

Eine mächtige Sonneneruption


Videocredit: SOHO-Arbeitsgemeinschaft, LASCO, ESA, NASA

Beschreibung: Es war eine der stärksten Sonneneruptionen der Geschichte. Sie ereignete sich 2003 und war im gesamten elektromagnetischen Spektrum zu beobachten. Im Röntgenspektralbereich wurde die Sonne für kurze Zeit mehr als 100 Mal heller als sonst. Am Tag nach dieser gewaltigen X-17-Sonneneruption – und einem anschließenden koronalen Massenauswurf (KMA) – trafen die energiereichen Teilchen, die bei diesen Explosionen ausgestoßen wurden, auf die Erde, riefen Polarlichter hervor und beeinflussten Satelliten. Die Raumsonde SOHO, welche diese Bilder fotografierte, wurde in einen schildkrötenartigen Sicherheitsmodus versetzt, um Schäden durch diesen und nachfolgende Teilchenstürme von der Sonne zu vermeiden.

In diesem Zeitrafferfilm wurden Ereignisse, die vier Stunden dauerten, auf 10 Sekunden komprimiert. Der KMA, der um die zentrale Sonnenblende herum sichtbar ist, tritt etwa drei Viertel der Videolänge auf, die Bilder zum Ende hin werden immer stärker verrauscht, als Protonen von den Explosionen auf SOHOs LASCO-Detektor trafen.

An einem Tag im Jahr 1859 führten die Auswirkungen eines noch mächtigeren Sonnensturms dazu, dass Telegrafenmasten auf der Erde Funken sprühten, was als Carrington-Ereignis in die Geschichte einging. Mächtige Sonnenstürme wie dieser können den Himmel mit schönen Polarlichtern bedecken, aber sie stellen auch eine echte Gefahr dar, da sie Satelliten und sogar Stromnetze auf der Erde beschädigen können.

Zur Originalseite

Start der Parker Solar Probe

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: John Kraus

Beschreibung: Wann ist die beste Zeit, um eine Sonde zur Sonne zu starten? Die nun historische Antwort – das ist kein Witz, weil es letztes Wochenende passiert ist – lautet nachts, nicht nur, weil das Startfenster der Parker Solar Probe (PSP) der NASA zu ihrer geplanten Umlaufbahn teilweise in der Nacht lag, sondern auch, weil die meisten PSP-Instrumente im Schatten ihres Schildes arbeiten werden – und so ihre eigene ewige Nacht in der Nähe der Sonne schaffen.

Bis dahin vergehen Jahre, in denen die PSP genügend Orbitalenergie abgibt, um sich der Sonne zu nähern, indem sie siebenmal an der Venus vorbeischwingt. Schließlich soll die PSP geplanterweise gefährlich nah an der Sonne vorbeiziehen, und zwar innerhalb von 9 Sonnenradien – es wird die größte Annäherung aller Zeiten. In dieser Nähe steigt die Temperatur auf 1400 Grad Celsius an der Tagseite des PSP-Sonnenschildes – das ist heiß genug, um viele Arten von Glas zu schmelzen. Auf der Nachtseite herrscht jedoch fast Zimmertemperatur.

Ein Hauptziel der PSP-Mission zur Sonne ist ein besseres Verständnis der Menschheit für die Ausbrüche der Sonne, welche die irdischen Satelliten und Stromnetze beeinträchtigen. Hier ist der Nachtstart der PSP an Bord der Delta IV Heavy der United Launch Alliances am frühen Sonntagmorgen abgebildet.

Zur Originalseite

Koronaler Regen auf der Sonne


Videocredit: Solar Dynamics Observatory, SVS, GSFC, NASA; Musik: „Thunderbolt“ von Lars Leonhard

Beschreibung: Regnet es auf der Sonne? Ja, doch der Niederschlag ist kein Wasser, sondern extrem heißes Plasma. Ein solcher Regen ereignete sich Mitte Juli 2012 nach einer Eruption auf der Sonne, bei der sowohl ein koronaler Massenauswurf als auch eine mittelmäßige Sonneneruption auftraten.

Danach trat jedoch etwas eher Ungewöhnliches auf: In der nahen Sonnenkorona wurde Plasma fotografiert, das abkühlte und zurückfiel. Dieses Phänomen ist als koronaler Regen bekannt. Wegen ihrer elektrischen Ladung wurden Elektronen, Protonen und Ionen im Regen entlang bestehender Magnetschleifen grazil zur Sonnenoberfläche gelenkt. Die Szene wirkt wie ein surrealer, dreidimensionaler quellenloser Wasserfall.

Das überraschend ruhige Schauspiel ist in Ultraviolettlicht abgebildet und zeigt Materie, die bei einer Temperatur von etwa 50.000 Kelvin leuchtet. Jede Sekunde dieses Zeitraffervideos dauert in Echtzeit etwa 6 Minuten, somit dauerte der ganze koronale Regenschauer etwa 10 Stunden. Aktuelle Beobachtungen zeigen, dass so ein koronaler Regen auch in kleineren Schleifen auftreten und ganze 30 Stunden dauern kann.

Zur Originalseite

Die losgelassene Sonne: Riesenfackel in Ultraviolett


Videocredit: NASA GSFC’s Scientific Visualization Studio, Solar Dynamics Obs.

Beschreibung: Einer der eindrucksvollsten Sonnenanblicke ist eine ausbrechende Eruption. Im Juni 2011 entließ die Sonne eine einigermaßen eindrucksvolle, mittelgroße Sonnenfackel, während durch die Rotation aktive Sonnenfleckenregionen zum Sonnenrand gelangten. Auf diese Fackel folgte jedoch ein gewaltiger Strom aus magnetisiertem Plasma. Die Aufnahme in extremem Ultraviolettlicht vom Ausbruch dieser Riesenfackel, die am Sonnenrand zu sehen ist, stammt vom Solar Dynamics Observatory der NASA.

Dieses Zeitraffervideo zeigt, wie bei dem stundenlangen Ereignis dunkles kühleres Plasma auf einen großen Bereich der Sonnenoberfläche herabregnet und sich entlang der unsichtbaren Magnetfeldlinien wölbt. In Verbindung damit wurde ein koronaler Massenauswurf – eine massereiche Wolke energiereicher Teilchen – Richtung Erde geschleudert, wo er zu einem Streifschuss des Erdmagnetfeldes führte.

Zur Originalseite

Der Polarlichtbaum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Alyn Wallace Photography

Beschreibung: Kann Ihr Baum das auch?

Dieses Bild zeigt eine visuelle Überlagerung der dunklen Zweige eines nahen Baumes mit dem hellen Leuchten eines fernen Polarlichts. Die Schönheit des Polarlichts – und wie es einen Baum in der Nähe nachzuahmen schien – faszinierte den Fotografen sosehr, dass er vorübergehend zu fotografieren vergaß. Aus dem richtigen Blickwinkel betrachtet schien es, als ob der Baum Polarlichtblätter hatte. Zum Glück kam er zu Sinnen, bevor das Polarlicht eine andere Form annahm, und fotografierte die Ehrfurcht gebietende, flüchtige Überlagerung.

Polarlichter werden üblicherweise von energiereichen Elektronen ausgelöst, die von Sonneneruptionen stammen und in einer Höhe von etwa 150 Kilometern auf die Erdatmosphäre treffen. Das ungewöhnliche Erde-Himmel-Zusammenwirken wurde zu Beginn des Monats in Island beobachtet.

Zur Originalseite

Es kam von der Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit: SOHO-EIT Consortium, ESA, NASA

Beschreibung: Was taucht da am Sonnenrand auf? Was auf den ersten Blick wie ein Sonnenmonster aussehen mag, ist in Wirklichkeit eine Sonnenprotuberanz. Die oben gezeigte Protuberanz, die in diesem Jahr vom die Sonne umkreisenden Satelliten SOHO in einer frühen Phase ihrer Eruption aufgenommen wurde, entwickelte sich rasch zu einer der größten, die je aktenkundig wurden. Sogar auf dieser Abbildung ist die Protuberanz riesig – die Erde würde leicht hineinpassen. Eine Sonnenprotuberanz ist eine dünne Wolke aus Sonnengas, das vom Magnetfeld der Sonne über der Sonnenoberfläche gehalten wird. Eine ruhende Protuberanz bleibt üblicherweise etwa einen Monat lang bestehen, während sich eine eruptive Protuberanz – wie jene, die sich oben entwickelt – innerhalb von Stunden in einem koronalen Massenauswurf (KMA) entladen kann und dabei heißes Gas ins Sonnensystem ausstößt. Protuberanzen sind zwar sehr heiß, erscheinen aber üblicherweise dunkel, wenn man sie vor der Sonne betrachtet, da sie etwas kühler als deren Oberfläche sind. Da sich unsere Sonne im Lauf der nächsten drei Jahre auf ein solares Maximum zubewegt, sind weitere große eruptive Protuberanzen zu erwarten.

Zur Originalseite

Eine verschlungene Sonnenprotuberanz

Siehe Beschreibung. Ein Klick auf das Bild lädt die höchste verfügbare Auflösung

Credit: SOHO Consortium, EIT, ESA, NASA

Beschreibung: Zehn Erden würden leicht in die „Klaue“ dieses scheinbaren Sonnenmonsters passen. Das Monster, unten links zu sehen, ist eine riesige ausbrechende Protuberanz, die beobachtet wurde, als sie auf unserer Sonne ausbrach. Das dramatische Bild oben wurde Anfang 2000 von dem die Sonne umrundenden Satelliten SOHO aufgenommen. Diese riesige Protuberanz ist nicht nur wegen ihrer Größe bedeutsam, sondern auch wegen ihrer Form. Die gewundene Achterschleife lässt darauf schließen, dass sich ein komplexes Magnetfeld durch die austretenden Sonnenpartikel durchfädelt. Differenzielle Rotation im Inneren der Sonne könnte könnte die Oberflächenexplosion erklären. Obwohl riesige Protuberanzen und energetische koronale Massenauswürfe (KMA) relativ selten auftreten, geschehen sie häufiger in zeitlicher Nähe eines Sonnenflecken-Maximums, wenn die Zahl der Sonnenflecken und die Sonnenaktivität während des elfjährigen Sonnenzyklusses den Höhepunkt erreicht.

Zur Originalseite