Simulation TNG50: Ein Galaxienhaufen entsteht


Videocredit: IllustrisTNG-Projekt; Visualisierung: Dylan Nelson (Max Planck Institut für Astrophysik) et al. Musik: Symphonie No. 5 (Ludwig van Beethoven) via YouTube Audio Library

Beschreibung: Wie entstehen Galaxienhaufen? Da sich unser Universum zu langsam bewegt, um es zu beobachten, werden schneller bewegte Computersimulationen erstellt, um das herauszufinden. Ein neuer Versuch ist TNG50 von IllustrisTNG, eine verbesserte Version der berühmten Illustris-Simulation.

Der erste Teil dieses Videos zeigt die Spuren kosmischen Gases (großteils Wasserstoff), das sich vom frühen Universum bis heute zu Galaxien und Galaxienhaufen entwickelt, wobei hellere Farben schneller bewegtes Gas markieren. Während das Universum heranreift, fällt Gas in Gravitationssenken, Galaxien entstehen, Galaxien rotieren, Galaxien kollidieren und verschmelzen, und die ganze Zeit über entstehen Schwarze Löcher in Galaxienzentren und stoßen umgebendes Gas mit hoher Geschwindigkeit aus.

Die zweite Hälfte des Videos folgt der Spur von Sternen und zeigt, wie ein Galaxienhaufen mit Gezeitenschweifen und Sternströmen zustande kommt. Der Ausfluss von Schwarzen Löchern ist in TNG50 überraschend komplex, und die Details werden mit unserem realen Universum verglichen. Zu untersuchen, wie Gas im frühen Universum verschmolz, hilft der Menschheit besser zu verstehen, wie Erde, Sonne und Sonnensystem ursprünglich entstanden sind.

Zur Originalseite

Animation: Perseïden-Meteorstrom

Visualisierungscredit: Ian Webster; Daten: NASA, CAMS, Peter Jenniskens (SETI-Institut)

Woher kommen die Meteore der Perseïden? Es sind vorwiegend kleine Steinsplitter, die vom Kometen Swift-Tuttle abfielen. Diese Stücke folgen weiterhin der Bahn des Kometen. Dabei treiben sie langsam auseinander.

Diese Animation zeigt den ganzen Strom an Meteoroiden, der um unsere Sonne kreist. Jedes Jahr nähert sich die Erde diesem Strom. Dann sehen wir den Meteorstrom der Perseïden. Die Animation zeigt den Kometenschutt hell. Normalerweise ist er klein und dunkel, sodass man ihn praktisch nicht aufspüren kann. Nur ein kleiner Bruchteil dieser Teilchen gelangt in die Erdatmosphäre. Dort wird er aufgeheizt und leuchtet, wenn er zerfällt.

Dieses Wochenende verspricht eine der besten Himmelsnächte, wenn man die Perseïden und weitere aktive Meteorströme beobachten möchte. Denn der Neumond ist nicht nur dunkel, er steht außerdem die meiste Zeit nachts gar nicht am Himmel. Zwar überstrahlt der Neumond nicht die blassen Perseïden, doch er bedeckt teilweise die Sonne. Daher kann man an manchen nördlichen Orten eine partielle Sonnenfinsternis beobachten.

Zur Originalseite

Galaxienentstehung in einem magnetischen Universum


Bildcredit: IllustrisTNG Projekt; Visualisierung: Mark Vogelsberger (MIT) et al. Musik: Gymnopedie 3 (Komponist: Erik Satie, Musiker: Wahneta Meixsell)

Beschreibung: Wie sind wir hierher gekommen? Wir wissen, dass wir auf einem Planeten leben, der einen Stern umkreist, welcher um eine Galaxie kreist, aber wie ist das alles entstanden?

Um die Details besser zu verstehen, verbesserten Astrophysiker die berühmte IllustrisSimulation zu IllustrisTNG – diese ist nun das komplexeste Computermodell der Entwicklung von Galaxien in unserem Universum. Dieses Video zeigt die Magnetfelder vom frühen Universum (Rotverschiebung 5) bis heute (Rotverschiebung 0). Relativ schwache Magnetfelder sind blau abgebildet, starke sind weiß dargestellt. Diese B-Felder passen sehr gut zu Galaxien und Galaxienhaufen.

Am Beginn der Simulation umkreist eine virtuelle Kamera das virtuelle IllustrisTNG-Universum und zeigt eine 30 Millionen Lichtjahre große junge Region, die ziemlich fadenförmig ist. Durch die Schwerkraft entstehen viele Galaxien und verschmelzen, während sich das Universum ausdehnt und entwickelt. Am Ende stimmt das simulierte IllustrisTNG-Universum statistisch gesehen gut mit unserem gegenwärtigen wirklichen Universum überein, obwohl es einige interessante Unterschiede gibt – zum Beispiel eine Abweichung bei der Energie von Radiowellen, die von schnell bewegten geladenen Teilchen abgestrahlt wird.

Zur Originalseite

Immersive Visualisierung des galaktischen Zentrums Sgr A*

Videocredit: NASA, CXC, Pontifical Catholic Univ. of Chile, C. Russell et al.

Was sieht man, wenn man aus dem Zentrum unserer Galaxis nach außen schaut? Dieses Video zeigt zwei wissenschaftlich ermittelte Möglichkeiten. Das immersive Video umfasst 360 Grad. Man kann es in jede Richtung drehen. Die Computersimulation basiert auf Infrarotdaten des Very Large Telescope (VLT) der ESO in Chile und Röntgendaten des NASARöntgenobservatoriums Chandra im Orbit.

Im Video erreicht ihr zu Beginn rasch Sgr A* (Sagittarius A Stern). Dort ist das sehr massereiche Schwarze Loch im Zentrum der Galaxis. Wenn ihr dann nach außen seht, zeigt die 500-Jahre-Zeitraffersimulation leuchtendes Gas und viele Lichtpunkte, die um euch kreisen. Viele der Punkte sind junge Wolf-Rayet-Sterne. Von diesen strömen sichtbare heiße Winde in die umgebenden Nebel.

Wolken, die näher kommen, werden länglich. Gleichzeitig fallen Objekte, die zu nahe kommen, hinein. Gegen Ende des Videos wiederholt sich die Simulation. Diesmal stößt die dynamische Region um Sgr A* heißes Gas aus, das die näher kommende Materie zurückstößt.

Zur Originalseite

Wirbelsturmsaison – animiert


Videocredit: M. R. Radcliff (USRA) et al., NASAGSFC, SVS; Musik: Elapsing Time von C. Telford und R. A. Navarro (ASCAP)

Beschreibung: Wohin wandern Wirbelstürme? Um gefährliche Stürme besser zu verstehen, kombinierte die NASA die Daten mehrerer Satelliten zu dieser Supercomputersimulation der Wirbelsturmsaison des letzten Jahres.

In diesem Video wurden Rauch (weiß), Meersalz (blau) und Staub (braun) von August bis Oktober 2017 auf der Nordhälfte der westlichen Erdhalbkugel aufgezeichnet. Diese Aerosole machen mitunter unsichtbare Winde sichtbar. Inmitten der vielen faszinierenden Strömungen wirbeln rechts Orkane über den Atlantik. Einige dieser Wirbelstürme peitschten Inseln und Küstenregionen in Nordamerika, ehe sie sich im Nordatlantik verflüchtigten.

Die Analyse der Wettermuster dieses Jahres könnte schon nächstes Jahr genauere Unwettervorhersagen liefern.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Auf dieser Simulation ziehen sich dunkle Fäden durchs Universum. Es ist Dunkle Materie. Die bekannte Materie sind orangefarbige Klumpen, es gibt nur wenige davon.

Illustrationscredit und Bildrechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es im Universum? Auf dieser Karte der Dunklen Materie scheint es so. Die Gravitation unsichtbarer Dunkler Materie erklärt am besten, warum Galaxien so schnell rotieren und warum sie so schnell um Haufen kreisen. Sie erklärt auch, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie sie ist. Das gilt im lokalen Universum, aber auch im kosmischen Mikrowellenhintergrund.

Das Bild entstand durch eine detailreiche Simulation mit Computern. Es stammt aus der Weltraumschau „Dunkles Universum” des Hayden-Planetariums im Amerikanischen Museum für Naturgeschichte. Das Bild zeigt, wie die allgegenwärtig die Dunkle Materie im Universum spukt. Die schwarzen, komplexen Fasern bestehen aus Dunkler Materie, die alles durchdringt. Sie sind hier wie Spinnennweben im Universum verteilt. Nur wenige Klumpen bestehen aus bekannter baryonischer Materie. Sie sind orange gefärbt. Die Simulation passt gut zu den Beobachtungen der Astronomie.

Dunkle Materie ist an sich schon ziemlich seltsam. Ihre Form ist unbekannt. Noch unheimlicher ist, dass sie nicht mehr als die seltsamste Quelle für Gravitation im Universum gilt, die wir vermuten. Diese Ehre gebührt nun der Dunklen Energie. Sie ist eine homogenere Quelle abstoßender Gravitation. Anscheinend bestimmt sie die Ausdehnung des ganzen Universums.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie

Zur Originalseite

Himmlisches Feuerwerk: In den Sternhaufen Westerlund 2

Credit der Visualisierung: NASA, ESA, Hubble, J. Anderson et al. (STScI); Danksagung an das Hubble-Vermächtnisteam (STScI/AURA), A. Nota (ESA/STScI), das Westerlund-2-Wissenschaftsteam und die ESO

Stell dir vor, du könntest direkt in einen Haufen fliegen, in dem Sterne entstehen. Dieses Video zeigt so eine Visualisierung in Zeitraffer. Es entstand aus 3-D-Computermodellen der Region um den Sternhaufen Westerlund 2. Die Modelle entstanden aus Bildern des Weltraumteleskops Hubble in sichtbarem und infrarotem Licht.

Westerlund 2 ist etwa 10 Lichtjahre groß und 20.000 Lichtjahre entfernt. Er liegt im Sternbild Schiffskiel (Carina). Zu Beginn der anschaulichen Animation füllt der größere Nebel Gum 29 das Bild. In der Mitte ist ein junger Haufen aus hellen Sternen. Während ihr euch dem Haufen nähert, zischen Sterne vorbei.

Bald schwenkt das imaginäre Schiff, und ihr fliegt über Säulen aus interstellarem Gas und Staub. Sie sind Lichtjahre lang. Starke Winde und die Strahlung massereicher junger Sterne zerstören alles außer den dichtesten Staubklumpen in der Nähe. In den Schatten der Klumpen bleiben Säulen zurück. Viele davon zeigen zum Zentrum des Haufens.

Zuletzt fliegt ihr zur Oberseite des Sternhaufens. Dort seht ihr Hunderte der massereichsten Sterne, die wir kennen.

Zur Originalseite

Finsternis über Amerika: Video zeigt Pfadprognose

Videocredit: NASA GSFCStudio für wissenschaftliche Visualisierung; Blaue-Murmel-Daten: Dank an Reto Stöckli (NASA/GSFC)

Wo seid ihr bei der Finsternis in den USA? Am 21. August kreuzt der Mondschatten die Staaten auf dem Kontinent Nordamerika. Das passiert erstmals seit 1979. Der Pfad wurde dank aktuellen astronomischen Wissens präzise berechnet. Ihr seht ihn auf diesem NASA-Video. Die meisten Menschen in den USA sind weniger als eine Tagesreise vom Zentralpfad der totalen Sonnenfinsternis entfernt. Im Rest von Nordamerika sieht man eine partielle Sonnenfinsternis.

Auf dem Pfad der Totalität bedeckt der Mond die Sonne. Dabei verbreitet er ganze 2 Minuten und 40 Sekunden gruselige Dunkelheit, wenn der Himmel ausreichend klar ist. Möchtet ihr während der Finsternis eine Party veranstalten? Dann kontaktiert den örtlichen Verein für Astronomie, ein Zentrum für Wissenschaft oder die Universität. Vielleicht ist dort schon eine geplant.

Manche Leute reisten bis ans Ende der Welt und beobachteten dort eine totale Sonnenfinsternis. Auf dem Weg zeichneten sie unterhaltsame Abenteuer auf.

Zur Originalseite