Simulation TNG50: Ein Galaxienhaufen entsteht


Videocredit: IllustrisTNG-Projekt; Visualisierung: Dylan Nelson (Max Planck Institut für Astrophysik) et al. Musik: Symphonie No. 5 (Ludwig van Beethoven) via YouTube Audio Library

Beschreibung: Wie entstehen Galaxienhaufen? Da sich unser Universum zu langsam bewegt, um es zu beobachten, werden schneller bewegte Computersimulationen erstellt, um das herauszufinden. Ein neuer Versuch ist TNG50 von IllustrisTNG, eine verbesserte Version der berühmten Illustris-Simulation.

Der erste Teil dieses Videos zeigt die Spuren kosmischen Gases (großteils Wasserstoff), das sich vom frühen Universum bis heute zu Galaxien und Galaxienhaufen entwickelt, wobei hellere Farben schneller bewegtes Gas markieren. Während das Universum heranreift, fällt Gas in Gravitationssenken, Galaxien entstehen, Galaxien rotieren, Galaxien kollidieren und verschmelzen, und die ganze Zeit über entstehen Schwarze Löcher in Galaxienzentren und stoßen umgebendes Gas mit hoher Geschwindigkeit aus.

Die zweite Hälfte des Videos folgt der Spur von Sternen und zeigt, wie ein Galaxienhaufen mit Gezeitenschweifen und Sternströmen zustande kommt. Der Ausfluss von Schwarzen Löchern ist in TNG50 überraschend komplex, und die Details werden mit unserem realen Universum verglichen. Zu untersuchen, wie Gas im frühen Universum verschmolz, hilft der Menschheit besser zu verstehen, wie Erde, Sonne und Sonnensystem ursprünglich entstanden sind.

Zur Originalseite

Galaxienentstehung in einem magnetischen Universum


Bildcredit: IllustrisTNG Projekt; Visualisierung: Mark Vogelsberger (MIT) et al. Musik: Gymnopedie 3 (Komponist: Erik Satie, Musiker: Wahneta Meixsell)

Beschreibung: Wie sind wir hierher gekommen? Wir wissen, dass wir auf einem Planeten leben, der einen Stern umkreist, welcher um eine Galaxie kreist, aber wie ist das alles entstanden?

Um die Details besser zu verstehen, verbesserten Astrophysiker die berühmte IllustrisSimulation zu IllustrisTNG – diese ist nun das komplexeste Computermodell der Entwicklung von Galaxien in unserem Universum. Dieses Video zeigt die Magnetfelder vom frühen Universum (Rotverschiebung 5) bis heute (Rotverschiebung 0). Relativ schwache Magnetfelder sind blau abgebildet, starke sind weiß dargestellt. Diese B-Felder passen sehr gut zu Galaxien und Galaxienhaufen.

Am Beginn der Simulation umkreist eine virtuelle Kamera das virtuelle IllustrisTNG-Universum und zeigt eine 30 Millionen Lichtjahre große junge Region, die ziemlich fadenförmig ist. Durch die Schwerkraft entstehen viele Galaxien und verschmelzen, während sich das Universum ausdehnt und entwickelt. Am Ende stimmt das simulierte IllustrisTNG-Universum statistisch gesehen gut mit unserem gegenwärtigen wirklichen Universum überein, obwohl es einige interessante Unterschiede gibt – zum Beispiel eine Abweichung bei der Energie von Radiowellen, die von schnell bewegten geladenen Teilchen abgestrahlt wird.

Zur Originalseite

Immersive Visualisierung des galaktischen Zentrums Sgr A*

Videocredit: NASA, CXC, Pontifical Catholic Univ. of Chile, C. Russell et al.

Was sieht man, wenn man aus dem Zentrum unserer Galaxis nach außen schaut? Dieses Video zeigt zwei wissenschaftlich ermittelte Möglichkeiten. Das immersive Video umfasst 360 Grad. Man kann es in jede Richtung drehen. Die Computersimulation basiert auf Infrarotdaten des Very Large Telescope (VLT) der ESO in Chile und Röntgendaten des NASARöntgenobservatoriums Chandra im Orbit.

Im Video erreicht ihr zu Beginn rasch Sgr A* (Sagittarius A Stern). Dort ist das sehr massereiche Schwarze Loch im Zentrum der Galaxis. Wenn ihr dann nach außen seht, zeigt die 500-Jahre-Zeitraffersimulation leuchtendes Gas und viele Lichtpunkte, die um euch kreisen. Viele der Punkte sind junge Wolf-Rayet-Sterne. Von diesen strömen sichtbare heiße Winde in die umgebenden Nebel.

Wolken, die näher kommen, werden länglich. Gleichzeitig fallen Objekte, die zu nahe kommen, hinein. Gegen Ende des Videos wiederholt sich die Simulation. Diesmal stößt die dynamische Region um Sgr A* heißes Gas aus, das die näher kommende Materie zurückstößt.

Zur Originalseite

Wirbelsturmsaison – animiert


Videocredit: M. R. Radcliff (USRA) et al., NASAGSFC, SVS; Musik: Elapsing Time von C. Telford und R. A. Navarro (ASCAP)

Beschreibung: Wohin wandern Wirbelstürme? Um gefährliche Stürme besser zu verstehen, kombinierte die NASA die Daten mehrerer Satelliten zu dieser Supercomputersimulation der Wirbelsturmsaison des letzten Jahres.

In diesem Video wurden Rauch (weiß), Meersalz (blau) und Staub (braun) von August bis Oktober 2017 auf der Nordhälfte der westlichen Erdhalbkugel aufgezeichnet. Diese Aerosole machen mitunter unsichtbare Winde sichtbar. Inmitten der vielen faszinierenden Strömungen wirbeln rechts Orkane über den Atlantik. Einige dieser Wirbelstürme peitschten Inseln und Küstenregionen in Nordamerika, ehe sie sich im Nordatlantik verflüchtigten.

Die Analyse der Wettermuster dieses Jahres könnte schon nächstes Jahr genauere Unwettervorhersagen liefern.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Bildrechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es in unserem Universum? Auf dieser Karte der Dunklen Materie scheint es so. Die Gravitation unsichtbarer Dunkler Materie ist die beste Erklärung dafür, warum Galaxien so schnell rotieren, warum Galaxien so schnell um Haufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie sie ist – sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Dieses Bild aus der Weltraumschau „Das dunkle Universum“ des Hayden-Planetariums im Amerikanischen Museum für Naturgeschichte zeigt, wie die allgegenwärtige Dunkle Materie in unserem Universum vielleicht spukt. Dieses Bild stammt aus einer detailreichen Computersimulation. Schwarze, komplexe Fasern aus alles durchdringender Dunkler Materie sind hier wie Spinnennweben im Universum verteilt. Die relativ wenigen Klumpen aus bekannter baryonischer Materie sind orange gefärbt.

Diese Simulationen stimmen statistisch gesehen gut mit astronomischen Beobachtungen überein. Etwas unheimlicher ist, dass Dunkle Materie – obwohl sie ziemlich seltsam ist und einer unbekannte Form hat – nicht mehr die seltsamste vermutete Quelle der Gravitation im Universum ist. Diese Ehre hat nun die Dunkle Energie, eine homogenere Quelle abstoßender Gravitation, die anscheinend die Ausdehnung des ganzen Universums bestimmt.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie
Zur Originalseite

Animation der Entwicklung von Galaxien

Videocredit: Donna Cox (AVL NCSA/U. Illinois) et al, GSFC der NASA, AVL, NCSA

Wie entstand das heutige Universum aus einem so gleichmäßigen Beginn? Um das zu verstehen, berechnete die NASA mit Forschenden der Quantenkosmologie dieses Animationsvideo. Es läuft in Zeitraffer. Die Simulation zeigt einen Teil des Universums. Sie umfasst 100 Millionen Lichtjahre. Es beginnt etwa 20 Millionen Jahre nach dem Urknall und läuft bis in die Gegenwart.

Der Beginn läuft glatt. Dann verwandeln sich Klumpen aus Materie durch die Gravitation in Galaxien. Die Galaxien bewegen sich sofort aufeinander zu. Bald kondensieren viele davon zu langen Fasern. Andere verschmelzen zu einem großen, heißen Galaxienhaufen. Solche Simulationen untersuchen mögliche Eigenschaften des Universums. Das hilft bei der Entwicklung der Konstruktion des Weltraumteleskops James Webb. Sein Start ist derzeit für Ende 2018 geplant.

Zur Originalseite

Flug über Plutos Mond Charon


Videocredit: NASA, Johns Hopkins U. APL, SwRI, Stuart Robbins

Mit etwas dichterischer Freiheit gibt es nun wissenschaftliche Beweise, dass die Hölle zugefroren ist. Einerseits sagt die griechische Mythologie, dass Charon der Fährmann zur Unterwelt ist. Andererseits zeigt eine Auswertung der Daten der Roboter-Raumsonde New Horizons die Ursache einer riesigen Schlucht. Sie verläuft um den 1200 km großen Mond. Die Schlucht entstand, indem ein riesiger See im Inneren zufror.

Die Raumsonde New Horizons schoss im Juli an Charon vorbei. Er ist der größte Mond des Zwergplaneten Pluto. Über ihn erhielt Charon seinen Namen.

Wasser dehnt sich aus, wenn es friert. Daher brach die äußere Kruste auf, die bereits erhärtet war. Um den Bruch besser zu zeigen, erstellte man digital aus den gesammelten Bildern eine Fantasiereise über einen Teil von Charon. Das Video beginnt an der dunklen Ablagerung in der Nähe von Charons Nordpol. Sie wird Mordor genannt. Danach zeigt es die Schlucht um den ganzen Zwergplaneten. Am Ende sieht man im Video eine viel diskutierte Schwellung. Sie wird Grabenberg genannt.

Wenn man die Vergangenheit von Pluto und Charon erforscht, hilft uns das, freundliche und furchterregende Orte im frühen Sonnensystem, in dem die Erde entstand, auf der schließlich Leben aufkam, besser zu verstehen.

Zur Originalseite

Zwei Schwarze Löcher verschmelzen

Credit der Simulation: Projekt zur Simulation eXtremer Raumzeiten

Klicke auf den roten Pfeil und schau zu, wie zwei Schwarze Löcher verschmelzen. Die Videosimulation wurde vom ersten direkten Nachweis von Gravitationswellen durch LIGO angeregt. Es läuft in Zeitlupe. In Echtzeit dauert es etwa eine Drittelsekunde.

Die Schwarzen Löcher tanzen auf einer kosmischen Bühne vor Sternen, Gas und Staub. Ihre enorme Gravitation bricht das Licht hinter ihnen in Einsteinringe. Dabei nähern sie sich einander auf Spiralbahnen. Am Ende verschmelzen sie zu einem einzigen Schwarzen Loch.

Bei der rasanten Verschmelzung der massereichen Objekte entstehen unsichtbare Gravitationswellen. Das führt dazu, dass sich das sichtbare Bild kräuselt. Noch nach der Verschmelzung der Schwarzen Löcher schwappen sie innen und außen über die Einsteinringe.

Die Gravitationswellen, die LiIGO aufgespürt hat, werden als GW150914 bezeichnet. Sie passen zur Verschmelzung Schwarzer Löcher mit 36 und 29 Sonnenmassen. Ihre Entfernung beträgt 1,3 Milliarden Lichtjahre. Das einzelne Schwarze Loch, das am Ende entsteht, besitzt 62 Sonnenmassen. Drei Sonnenmassen bleiben übrig. Diese drei Sonnenmassen wurden in Energie umgewandelt, die in Form von Gravitationswellen abgestrahlt wurde.

Zur Originalseite