NGC 7822: Kosmisches Fragezeichen

Die leuchtende Sternbildungsregion NGC 7822 liegt etwa 3000 Lichtjahre entfernt am Rand einer riesigen Molekülwolke im nördlichen Sternbild Kepheus.

Bildcredit und Bildrechte: Yizhou Zhang

Beschreibung: Es sieht aus wie ein riesiges kosmisches Fragezeichen, doch die große Frage ist eigentlich, wie das helle Gas und der dunkle Staub die Geschichte der Sternbildung in diesem Nebel erzählen. Die leuchtende Sternbildungsregion NGC 7822 liegt etwa 3000 Lichtjahre entfernt am Rand einer riesigen Molekülwolke im nördlichen Sternbild Kepheus. Auf dieser farbenfrohen, detailreichen Himmelslandschaft fallen besonders die hellen Ränder und dunklen Formen im Nebel auf.

Das Mosaik entstand aus 9 Bildern, die im Laufe von 28 Nächten mit einem kleinen Teleskop in Texas aufgenommen wurden, unter anderem mit Schmalbandfiltern – so werden die Emissionen von atomarem Sauerstoff, Wasserstoff und Schwefel in blauen, grünen und roten Farbtönen abbildet. Die Farbkombination aus Emissionslinien wurde als Hubble-Farbpalette bekannt.

Die Energie der atomaren Emissionen stammt von der energiereichen Strahlung der zentralen heißen Sterne. Ihre mächtigen Winde und Strahlung formen und erodieren die dichteren Säulen und räumen im Zentrum der Entstehungswolke eine charakteristische Höhlung frei, die Lichtjahre groß ist. Im Inneren der Säulen könnten durch gravitativen Kollaps weiterhin Sterne entstehen, doch wenn die Säulen erodieren, werden alle entstehenden Sterne schlussendlich von ihrem Vorrat an Sternenstaub abgeschnitten.

Dieses Sichtfeld misst in der geschätzten Entfernung von NGC 7822 mehr als 40 Lichtjahre.

Zur Originalseite

Lynds Dunkelnebel 1251

Lynds Dunkelnebel (LDN) 1251.

Bildcredit und Bildrechte: Cristiano Gualco

Beschreibung: In Lynds Dunkelnebel (LDN) 1251 entstehen Sterne. Die staubige Molekülwolke, die etwa 1000 Lichtjahre entfernt über der Ebene unserer Milchstraße schwebt, ist Teil eines Komplexes aus Dunkelnebeln, die in der Kepheus-Flare-Region kartiert wurden.

Die astronomische Erkundung der undurchsichtigen interstellaren Wolken im ganzen Spektrum zeigt energiereiche Erschütterungen und Ausflüsse, die mit Sternbildung einhergehen, unter anderem das verräterische rötliche Leuchten verstreuter Herbig-Haro-Objekte, die sich im Bild versteckten. Auch ferne Galaxien im Hintergrund lauern in der Szenerie, sie sind fast hinter der staubigen Weite verborgen.

Diese reizende Ansicht umfasst am Himmel mehr als zwei Vollmonde oder in der geschätzten Entfernung von LDN 1251 17 Lichtjahre.

Zur Originalseite

Nordamerika und Pelikan

Nordamerikanebel und Pelikannebel im Sternbild Schwan.

Bildcredit und Bildrechte: Andrew Klinger

Beschreibung: Wer die Erde mag, erkennt vielleicht die Umrisse dieser kosmischen Wolken. Links zeichnet die helle, von dunklen, undurchsichtigen Staubbahnen umrandete Emission die Form eines Kontinents nach, daher rührt ihr landläufiger Name Nordamerikanebel. Die Emissionsregion ist als NGC 7000 katalogisiert. Rechts neben der Ostküste des Nordamerikanebels liegt IC 5070, das vogelartige Profil des Nebels erinnert an einen Pelikan.

Die beiden hellen Nebel sind ungefähr 1500 Lichtjahre entfernt und Teil einer großen, komplexen Sternbildungsregion, die fast so nahe ist wie der besser bekannte Orionnebel. In dieser Entfernung umfasst das 3 Grad breite Sichtfeld 80 Lichtjahre.

Das aufwändige kosmische Porträt wurde aus kombinierten Schmalbandbildern erstellt, um die hellen Ionisationsfronten und das charakteristische Leuchten von atomarem Wasserstoff, Schwefel und Sauerstoff zu betonen. Ihr seht die Nebel an dunklen Orten mit Ferngläsern, wenn ihr – ausgehend vom hellen Stern Deneb im Sternbild Schwan – in nordöstlicher Richtung sucht.

Zur Originalseite

STARFORGE: Eine Sternentstehungs-Simulation


Video- und Textcredit: Michael Y. Grudić (Nordwestliche U.) et al., STARFORGE-Arbeitsgruppe; Musik: Prélude n°4, opus 28 in E-Moll (Frédéric Chopin)

Beschreibung: Wie entstehen Sterne? Die meisten entstehen in riesigen Molekülwolken in der Zentralscheibe einer Galaxie. Der Prozess wird von Sternwinden, Strahlströmen, sehr energiereichem Sternenlicht und Supernovaexplosionen bereits existierender Sterne gestartet, beeinflusst und begrenzt.

Dieses Video zeigt die komplexen Wechselwirkungen anhand der berechneten STARFORGE-Simulation einer Gaswolke mit 20.000 Sonnenmassen. In der Zeitraffer-Visualisierung zeigen hellere Regionen dichteres Gas an, Farben codieren die Geschwindigkeit des Gases (violett ist langsam, orange ist schnell), und Punkte markieren die Positionen neu entstandener Sterne.

Zu Beginn des Videos beginnt eine etwa 50 Lichtjahre große Gaswolke, sich durch ihre eigene Gravitation zu verdichten. Innerhalb von 2 Millionen Jahren entstehen erste Sterne, während neu entstandene massereiche Sterne eindrucksvolle Strahlströme ausstoßen. Nach 4,3 Millionen Jahren friert die Simulation ein, und der Raum wird gedreht, um einen dreidimensionalen Blickwinkel zu erhalten.

Vieles rund um Sternbildung ist noch nicht bekannt, darunter der Effekt der Strahlströme bei der Begrenzung der Masse später entstehender Sterne.

Portal ins Universum: Random APOD Generator
Zur Originalseite

Die Wolken im Carinanebel

Der Carinanebel ist als NGC 3372 katalogisiert, er umfasst mehr als 300 Lichtjahre und liegt etwa 7500 Lichtjahre entfernt im Sternbild Schiffskiel.

Bildcredit und Bildrechte: John Ebersole

Beschreibung: Welche Formen lauern im Carinanebel? Die dunklen, bedrohlichen Formen sind eigentlich Molekülwolken, also Knoten aus molekularem Gas und Staub, die so dicht sind, dass sie undurchsichtig wurden. Im Vergleich sind diese Wolken jedoch typischerweise viel weniger dicht als die Erdatmosphäre.

Hier seht ihr ein detailreiches Bild vom Zentrum des Carinanebels. In diesem Teil sind sowohl dunkle als auch farbige Wolken aus Gas und Staub besonders markant. Das Bild wurde Mitte 2016 am Siding Spring Observatory in Australien fotografiert. Der Nebel besteht vorwiegend aus Wasserstoff, der hier grün gefärbt wurde. Dem Bild wurden Farben zugewiesen, sodass Licht, das von Schwefel– und Sauerstoffspuren abgestrahlt wird, rot beziehungsweise blau abgebildet ist.

Der ganze Carinanebel ist als NGC 3372 katalogisiert, er umfasst mehr als 300 Lichtjahre und liegt etwa 7500 Lichtjahre entfernt im Sternbild Schiffskiel. Eta Carinae, der energiereichste Stern im Nebel, war in den 1830er-Jahren einer der hellsten Sterne am Himmel, verblasste dann aber dramatisch.

Zur Originalseite

Sternenstaub in der Perseus-Molekülwolke

In der Mitte liegt der Reflexionsnebel NGC 1333, rechts oben vdB 13, und links oben vdB 12, einen der seltenen gelblichen Reflexionsnebel.

Bildcredit und Bildrechte: Kerry-Ann Lecky Hepburn, Stuart Heggie

Beschreibung: Wolken aus Sternenstaub treiben durch diese detailreiche Himmelslandschaft in der Perseus-Molekülwolke, die ungefähr etwa 850 Lichtjahre entfernt ist. Staubige Nebel, die das Licht von eingebetteten jungen Sternen reflektieren, zeichnen sich im fast zwei Grad breiten Teleskopsichtfeld ab. In der Mitte liegt der charakteristisch bläulich gefärbte Reflexionsnebel NGC 1333, rechts oben seht ihr vdB 13, und links am oberen Bildrand vdB 12, einen der seltenen gelblichen Reflexionsnebel.

In der Molekülwolke entstehen Sterne, doch die meisten sind im allgegenwärtigen Staub in sichtbaren Wellenlängen verdeckt. Dennoch finden wir in NGC 1333 Hinweise auf kontrastierende rote Emissionen von Herbig-Haro-Objekten, weiters Strahlen und erschüttertes leuchtendes Gas, das von kürzlich entstandenen Sternen ausströmt.

Die chaotische Umgebung ist vielleicht ähnlich wie die, in der vor 4,5 Milliarden Jahren unsere Sonne entstand. In der geschätzten Entfernung der Perseus-Molekülwolke ist diese kosmische Szene etwa 40 Lichtjahre breit.

Zur Originalseite

Mars im Stier

Mars zieht am Sternhaufen der Plejaden im Sternbild Stier vorbei, links unten leuchten Aldebaran und die Hyaden, oben der Kaliforniennebel.

Bildcredit und Bildrechte: Petr Horalek / Institut für Physik in Opava

Beschreibung: Heute Abend könnt ihr den Mars am Abendhimmel sehen. Dort ist derzeit der Rover Perseverance stationiert. Der Rote Planet wandert am Himmel derzeit durch das Sternbild Stier und zieht nahe am Sternhaufen der Plejaden vorbei, benannt nach den sieben Schwestern.

Diese detailreiche Weitwinkelansicht der Region zeigt Mars am 3. März bei seiner fast engsten Annäherung an die Plejaden. Mars ist das helle, gelbliche Himmelslicht unten in der Mitte, er ist nur etwa 3 Grad vom hübschen blauen Sternhaufen entfernt.

Aldebaran, der Alphastern im Stier, wetteifert in Farbe und Helligkeit mit dem Mars. Der rote Riesenstern befindet sich links unten, er ist ein Vordergrundstern in der Sichtlinie zum weiter entfernten Sternhaufen der Hyaden. Die dunklen, staubigen Nebel sind für das bloße Auge zu blass, sie liegen am Rand der massereichen Perseus-Molekülwolke. Rechts oben seht ihr das markante rötliche Leuchten von NGC 1499, dem Kaliforniennebel.

Umfrage zu Ästhetik und Astronomie (englisch): Vertonungen
Zur Originalseite

Der Pelikannebel in Rot und Blau

Der Pelikannebel IC 5070 liegt im Sternbild Schwan neben dem Nordamerikanebel.

Bildcredit und Bildrechte: M. Petrasko, M. Evenden, U. Mishra (Insight Obs.)

Beschreibung: Der Pelikannebel verändert sich. Der ganze Nebel, der offiziell als IC 5070 bezeichnet wird, ist durch eine dunkle, staubgefüllte Molekülwolke vom größeren Nordamerikanebel getrennt. Der Pelikan ist insofern sehr interessant, weil er eine ungewöhnlich aktive Mischung ist aus Sternbildung und sich entwickelnden Gaswolken ist.

Dieses Bild wurde so bearbeitet, dass zwei Hauptfarben – rot und blau – zur Geltung kommen. Rot stammt dabei vorwiegend von Licht, das der interstellare Wasserstoff abstrahlt. Das ultraviolette Licht von jungen, energiereichen Sternen verwandelt kaltes Gas im Nebel langsam in heißes Gas. Die vorrückende Grenze zwischen den beiden Bereichen wird als Ionisationsfront bezeichnet, sie verläuft in hellem Rot über die Bildmitte. Übrig bleiben besonders dichte Tentakel aus kaltem Gas.

In einigen Millionen Jahren ist dieser Nebel vielleicht nicht mehr als Pelikan bekannt, weil das Verhältnis und die Anordnung von Sternen und Gas sicherlich etwas zurücklassen, das ganz anders aussieht.

APOD in Weltsprachen: arabisch, bulgarisch, katalanisch, chinesisch (Peking), chinesisch (Taiwan), kroatisch, tschechisch, niederländisch, Farsi, französisch, deutsch, hebräisch, Indonesisch, koreanisch, montenegrinisch, polnisch, russisch, serbisch, slowenisch, spanisch, taiwanesisch, türkisch, türkisch und ukrainisch
Zur Originalseite

Molekulare Dunkelwolke Barnard 68

Absorptionsnebel wie Barnard 68 im Sternbild Schlangenträger (Ophiuchus) gehören zu den dunkelsten und kältesten Orten im Universum.

Bildcredit: FORS-Team, 8,2-Meter-VLT Antu, ESO

Beschreibung: Wohin sind all diese Sterne verschwunden? Das hier wurde einst für ein Loch im Himmel gehalten, doch Astronominnen kennen es nun als dunkle Molekülwolke. Eine hohe Konzentration an Staub und molekularem Gas absorbiert praktisch alles sichtbare Licht, das von den Sternen im Hintergrund abgestrahlt wird.

Wegen der unheimlichen dunklen Umgebung zählt das Innere solcher Molekülwolken zu den kältesten, isoliertesten Orten im Universum. Einer der interessantesten dieser dunklen Absorptionsnebel ist eine Wolke im Sternbild Schlangenträger (Ophiuchus), der hier abgebildete Barnard 68. Dass man im Zentrum keine Sterne sieht, lässt vermuten, dass Barnard 68 relativ nahe ist; Messungen zufolge ist er etwa 500 Lichtjahre entfernt und ein halbes Lichtjahr groß.

Es ist nicht genau bekannt, wie Molekülwolken wie Barnard 68 entstehen, doch man weiß, dass diese Wolken selbst wahrscheinlich Orte sind, in denen neue Sterne entstehen. Man fand sogar heraus, dass Barnard 68 wahrscheinlich kollabiert und ein neues Sternsystem bildet. In Infrarotlicht kann man direkt durch die Wolke hindurchblicken.

Zur Originalseite

Reflexionen des Geisternebels

VdB 141 oder Sh2-136 wird auch Geisternebel genannt, er ist größer als zwei Lichtjahre und 1200 Lichtjahre entfernt.

Bildcredit und Bildrechte: Bogdan Jarzyna

Beschreibung: Springen euch aus diesem interstellaren Sichtfeld aus Sternen und Staub Gestalten entgegen? Die glitzernde Weite ist voller blasser Wolken, die Sternenlicht reflektieren, und die im königlichen Sternbild Kepheus durch die Nacht treiben.

Diese spukhaften Erscheinungen lauern weit von eurer Nachbarschaft auf dem Planeten Erde entfernt – etwa 1200 Lichtjahre von hier in der Ebene der Milchstraße am Rand des Kepheus-Flare-Molekülwolkenkomplexes.

VdB 141 oder Sh2-136 wird auch Geisternebel genannt, er ist größer als zwei Lichtjahre und heller als die anderen spukhaften Schimären. Im Bild ist er unten zu sehen. Im Reflexionsnebel befinden sich die verräterischen Zeichen dichter Kerne, die in einem frühen Stadium der Sternbildung kollabieren.

Zur Originalseite

Die bunten Wolken von Rho Ophiuchi

Die Sternwolken um Rho Ophiuchi im Schlangenträger zeigen eine Vielzahl an Prozessen in verschiedenen Farben.

Bildcredit und Bildrechte: Amir H. Abolfath

Beschreibung: Die vielen eindrucksvollen Farben der Rho-Ophiuchi-Wolke zeigen die vielen Prozesse, die darin stattfinden. Die blauen Regionen leuchten vorwiegend in reflektiertem Licht. Das blaue Licht des Sternsystems Rho Ophiuchi und naher Sterne wird von diesem Teil des Nebels besser reflektiert als rotes Licht. Aus dem gleichen Grund erscheint der Tageshimmel der Erde blau.

Die roten und gelben Regionen leuchten vorwiegend durch die Emissionen von atomarem und molekularem Gas im Nebel. Das Licht der nahen blauen Sterne – das energiereicher ist als der helle Stern Antares – stößt Elektronen aus dem Gas, das dann leuchtet, wenn die Elektronen mit dem Gas rekombinieren.

Die dunkelbraunen Regionen entstehen durch Staubkörnchen, die in jungen Sternatmosphären entstanden sind, und die von hinten abgestrahltes Licht effizient blockieren.

Die Rho-Ophiuchi-Sternwolken liegen weit vor dem Kugelsternhaufen M4, der hier rechts oben abgebildet ist. Sie sind farbenprächtiger, als Menschen sie sehen können – die Wolken strahlen Licht in jeder Wellenlänge von Radio bis Gammastrahlen ab.

Astrophysik: Stöbert in +2200 Codes der Astrophysics Source Code Library
Zur Originalseite