Saturnorkan

Ein rotes Oval schräg in der Bildmitte ist von grünen Wolken umgeben. Das Bild wurde in Infrarot aufgenommen und ist in Falschfarben abgebildet.

Bildcredit: Cassini-Bildgebungsteam, SSI, JPL, ESA, NASA

Ende letzten Jahres schickte Cassini die ersten Bilder von Saturns hohem Norden im Sonnenlicht. Die Telekamera der Raumsonde nahm dieses atemberaubende Bild vom Strudel am Nordpol des Ringplaneten auf.

Das Falschfarbenbild entstand im nahen Infrarot. Es zeigt tief liegende Wolken in roten Farbtönen und hohe Wolken in Grün. Daher sieht der Nordpol-Orkan wie eine Rose aus. Das Auge des Sturms ist nach irdischen Maßstäben kolossal. Es ist etwa 2000 Kilometer groß.

Die Wolken am äußeren Rand haben eine Geschwindigkeit von mehr als 500 Kilometern pro Stunde. Der Orkan an Saturns Nordpol wirbelt im Inneren des großen sechseckigen Wettermusters, das als Saturns Sechseck bekannt ist. 2006 fotografierte Cassini auch den Orkan bei Saturns Südpol.

Zur Originalseite

Der Pferdekopfnebel in Infrarot von Hubble

Der sonst dunkle Pferdekopfnebel leuchtet hier rosarot vor einem dunklen Hintergrund, weil er in Infrarotlicht abgebildet wurde. Dunkle Staubwolken leuchten in Infrarotlicht.

Bildcredit: NASA, ESA und das Hubble-Vermächtnisteam (STSci/AURA)

Diese prächtige interstellare Staubwolke treibt durch den Kosmos. Sie wurde von Sternenwinden und Strahlung geformt, bis sie eine erkennbare Gestalt hatte. Passenderweise heißt sie Pferdekopfnebel. Sie ist in den weiten, komplexen Orionnebel M42 eingebettet.

Das detailreiche Bild zeigt ein vielleicht lohnendes Objekt. Man kann es aber mit einem kleinen Teleskop nur schwer erkennen. Es wurde kürzlich vom Weltraumteleskop Hubble zum 23. Jahrestag seines Starts in Infrarotlicht aufgenommen.

Die dunkle Molekülwolke ist etwa 1500 Lichtjahre entfernt. Sie ist als Barnard 33 katalogisiert. Sie ist hauptsächlich deshalb zu sehen, weil sie vom nahen, massereichen Stern Sigma Orionis von hinten beleuchtet wird.

Der Pferdekopfnebel verändert im Laufe der nächsten Millionen Jahre langsam seine auffällige Form. Vielleicht wird er von energiereichem Sternenlicht zerstört.

Zur Originalseite

Infrarotporträt der Großen Magellanschen Wolke

Das Infrarotbild zeigt die Große Magellansche Wolke in Falschfarben. Das Bild betont Staubwolken, die in sichtbarem Licht undurchdringlich sind.

Bildcredit: ESA / NASA / JPL-Caltech / STScI

Kosmische Staubwolken kräuseln dieses Infrarotporträt der Begleitgalaxie unserer Milchstraße, der Großen Magellanschen Wolke. Das Kompositbild des Weltraumteleskops Herschel und des Weltraumteleskops Spitzer zeigt, dass die benachbarte Zwerggalaxie voller Staubwolken ist, ähnlich wie der Staub in der Ebene der Milchstraße.

Die Staubtemperaturen zeigen Anzeichen von Sternbildungsaktivität. Die Daten von Spitzer in blauen Farbtönen zeigen warmen Staub, der von jungen Sternen aufgeheizt wird. Herschels Instrumente steuerten die in Rot und Grün gezeigten Bilddaten bei. Sie bilden Staubemissionen von kühleren, dazwischenliegenden Regionen ab. Dort beginnt die Sternbildung gerade, oder sie hat bereits aufgehört.

Die Erscheinung der Großen Magellanschen Wolke in Infrarot wird von Staubemissionen bestimmt. Sie unterscheidet sich von Bildern in sichtbarem Licht. Doch der bekannte Tarantelnebel in der Galaxie sticht immer noch hervor. Er ist die hellste Region links neben der Bildmitte und leicht erkennbar.

Die große Wolke Magellans ist etwa 160.000 Lichtjahre entfernt. Sie hat einen Durchmesser von ungefähr 30.000 Lichtjahren.

Zur Originalseite

Infraroter Orion von WISE

In grün gefärbten Sternwolken leuchtet in der Mitte ein rötlicher Nebel um eine helle Lichtquelle. Das Bild ist in Falschfarben dargestellt.

Bildcredit: NASA, JPL-Caltech, UCLA

Der große Nebel im Orion ist ein faszinierender Ort. Mit bloßem Auge erscheint er als kleiner, verschwommener Fleck im Sternbild Orion.

Dieses Bild ist ein Falschfarbenkomposit. Es wurde mit dem WISE-Observatorium in der Erdumlaufbahn in vier Farben des infraroten Lichts aufgenommen. Der Orionnebel wird hier als betriebsamer Ort mit kürzlich entstandenen Sternen, heißem Gas und dunklem Staub gezeigt.

Die Energie für einen Großteil des Orionnebels (M42) liefern die Sterne im Trapez-Sternhaufen. Auf diesem Weitwinkelbild ist er in der Mitte zu sehen. Die hellen Sterne sind von einem unheimlichen grünen Leuchten umgeben. Es ist ihr eigenes Sternenlicht, das von komplexen Staubfasern reflektiert wird, die einen Großteil der Region bedecken.

Zum Wolkenkomplex um den Orionnebel gehört auch der Pferdekopfnebel. Die Molekülwolken werden in den nächsten 100.000 Jahren langsam verdampfen.

Zur Originalseite

Herschels Andromeda

Die Galaxie im Bild wirkt fremdartig, weil nicht ihre Sterne gezeigt werden, sondern der Staub, der normalerweise dunkel ist. Um einen Kern verlaufen gewundene, orangefarben und gelb leuchtende Ranken.

Bildcredit: ESA/Herschel/PACS und SPIRE-Arbeitsgemeinschaft, O. Krause, HSC, H. Linz

Diese Infrarotansicht des Weltraumteleskops Herschel erforscht die Andromedagalaxie, die unserer Milchstraße nächstgelegene große Spiralgalaxie. Das berühmte Inseluniversum ist nur 2,5 Millionen Lichtjahre entfernt. In der Astronomie ist es auch als M31 bekannt.

Andromeda ist mehr als 200.000 Lichtjahre breit. Sie ist also mehr als doppelt so groß wie die Milchstraße. Die Bilddaten wurden in Falschfarben dargestellt. Sie markieren die kühlen Staubbahnen und Staubwolken, die im Infrarotlicht leuchten. Diese sind in sichtbaren Wellenlängen dunkel und undurchsichtig.

Rote Farbtöne im Außenbereich der Galaxie zeigen das Leuchten von Staub, der von Sternenlicht wenige zig Grad über den absoluten Nullpunkt erwärmt wurde. Blaue Farben gehen mit wärmerem Staub einher, der von Sternen im dicht gefüllten zentralen Kern aufgewärmt wird. Der Staub ist auch eine Markierungssubstanz für molekulares Gas. Er zeigt den gewaltigen Vorrat an Rohmaterial für künftige Sternbildung in Andromeda.

Zur Originalseite

Die Orion-Geschoße

Wie Finger wirken die leuchtenden Spuren im Randgebiet des Orionnebels, die durch Sternbildung in Gaswolken gesprengt wurden.

Bildcredit: GeMS/GSAOI Team, Gemini-Observatorium, AURA; Bearbeitung: Rodrigo Carrasco (Gemini-Obs.), Travis Rector (Univ. Alaska Anchorage)

Kosmische Geschoße durchstoßen die Randgebiete im Orionnebel. Dieser ist etwa 1500 Lichtjahre von uns entfernt. Diese scharfe Infrarot-Nahaufnahme zeigt die relativ dichten Geschoße. Diese heißen Gaswolken sind etwa so breit wie der zehnfache Durchmesser der Plutobahn. Sie werden durch gewaltige, energiereiche Sternbildung ausgesprengt.

Auf dem Falschfarbenbild sind sie blau abgebildet. Sie leuchten im Licht ionisierter Eisenatome und rasen mit Hunderten Kilometern pro Sekunde dahin. Ihre Durchbrüche sind von gelblichen Trassen aus schlagartig aufgeheiztem Wasserstoff im Nebel gesäumt. Die Länge der kegelförmigen Bugwellen beträgt bis zu einem Fünftel eines Lichtjahrs.

Das detailreiche Bild entstand mit der neu installierten adaptiven Optik GeMS des 8,1-Meter-Teleskops Gemini Süd in Chile. GeMS erzielt ein größeres Sichtfeld als frühere Generationen adaptiver Optiken. Dazu nützt GeMS fünf lasergenerierte Leitsterne. Mit deren Hilfe wird die Weichzeichnung der Erdatmosphäre ausgeglichen.

Zur Originalseite

Saturn bei Nacht

Das Bild ist eindeutig Saturn, doch durch die ungewöhnliche Beleuchtung sieht es fremd und schaurig aus. Die Sonde befindet sich auf der Nachtseite des Planeten und blickt von unten auf die nicht beleuchtete Ringebene.

Bildcredit: NASA, JPL-Caltech, Space Science Institute, Cassini-Bildgebungsteam

Dieses Bild von Saturns Schattenseite zeigt einen Glanz, der nur selten zu sehen ist. Am 17. Oktober 2012 fotografierte die Raumsonde Cassini bei ihrem 174. Umlauf die Nachtseite des Ringplaneten. Der Blick fällt aus einem Winkel von 19 Grad unter die Ringebene. Die Entfernung beträgt etwa 800.000 Kilometer. Die Sonne steht fast genau hinter dem Planeten.

Das Mosaikbild entstand aus 60 Einzelbildern. Sie wurden mit Infrarot-, Rot- und Violettfiltern fotografiert. Aus diesen Bildern entstand eine kontrastverstärkte Falschfarbensicht. Die von hinten stark beleuchteten Ringe sind vom Planeten aus gesehen hell. Doch vor dem Gasriesen sind sie als Silhouette zu sehen und daher dunkel. In der Mitte werfen sie ein zartes, schauriges Licht auf die Wolkenoberfläche. Dahinter wirft Saturn seinen eigenen dunklen Schatten auf die Ringe.

Ein ähnliches Cassinibild aus dem Jahr 2006 zeigt auch den Planeten Erde als blassen blauen Punkt in der Ferne. Diese Szenerie zeigt die eisigen Monde Enceladus beim Ringsystem und Tethys links unter den Ringen.

Zur Originalseite

MWC 922: Der Quadratnebel

Ein helles Zentrum ist von einem roten Nebel umgeben, das eine fast quadratische Form hat. Möglicherweise sind es zwei Kegel, die wir von der Seite sehen.

Bildcredit und Bildrechte: Peter Tuthill (Sydney U.) und James Lloyd (Cornell)

Wie entsteht ein Nebel, der wie ein Quadrat aussieht? Wir wissen es nicht. Doch das heiße Sternsystem MWC 922 ist offensichtlich in einen quadratisch geformten Nebel eingebettet. Das Bild kombiniert Infrarotaufnahmen des Hale-Teleskops auf dem Mt. Palomar in Kalifornien und Bilder des Keck-2-Teleskops auf dem Mauna Kea auf Hawaii.

Wie ist der Quadratnebel entstanden? Eine führende vorläufige Hypothese lautet, dass der Zentralstern oder die Zentralsterne in einem späten Stadium der Entwicklung Gaskegel ausstießen. Bei MWC 922 schließen diese Kegel zufällig fast einen rechten Winkel ein und sind von der Seite zu sehen.

Hinweise für die Kegelhypothese sind unter anderem radiale Speichen an den Kegelwänden. Forscher vermuten, dass die Kegel aus einem anderen Sichtwinkel ähnlich aussehen wie die riesigen Ringe der Supernova 1987A. Das lässt vermuten, dass ein Stern in MWC 922 eines Tages als eine ähnliche Supernova explodiert.

Zur Originalseite