M83: Die Tausend-Rubine-Galaxie

Die Spiralgalaxie M83 im Bild hat prachtvolle Spiralarme. Ihr gelblicher Kern ist von blau und rot leuchtenden Sternhaufen und Sternbildungsgebieten gesprenkelt.

Bildcredit: Subaru-Teleskop (NAOJ), Weltraumteleskop Hubble, Europäische Südsternwarte ESO; Bearbeitung und Bildrechte: Robert Gendler

Die große, schöne Spiralgalaxie M83 ist an die zwölf Millionen Lichtjahre entfernt. Sie liegt am südöstlichen Ende im sehr langen Sternbild Wasserschlange. Ihre markanten Spiralarme sind von dunklen Staubbahnen und blauen Sternhaufen durchzogen. Sie gaben dieser Galaxie ihren gängigen Namen: Südliches Feuerrad.

Rötliche Regionen mit Sternbildung sprenkeln die ausladenden Arme. Sie sind auf diesem funkelnden Farbkomposit betont. Daher hat M83 einen weiteren Spitznamen: Tausend-Rubine-Galaxie.

M83 ist etwa 40.000 Lichtjahre groß. Sie gehört zur selben Galaxiengruppe wie die aktive Galaxie Centaurus A. Der Kern von M83 strahlt im Röntgenlicht. Er besitzt eine hohe Konzentration an Neutronensternen und Schwarzen Löchern. Diese sind nach einem heftigen Sternbildungsausbruch übrig geblieben.

Das scharfe Farbkompositbild zeigt auch gezackte Sterne im Vordergrund in der Milchstraße. Hinten sind ferne Galaxien verteilt. Die Bilddaten stammen vom Subaru-Teleskop und von der Weitwinkel-Bildkamera der Europäischen Südsternwarte ESO sowie aus dem Hubble-Vermächtnisarchiv.

Zur Originalseite

M95: Spiralgalaxie mit einem inneren Ring

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, ESO, Amateurdaten; Bearbeitung und Bildrechte: Robert Gendler und Roberto Colombari

Beschreibung: Warum haben manche Spiralgalaxien einen Ring um die Mitte? M95 ist vor allen Dingen eines der nächstliegenden Beispiele einer großen, schönen Balkenspiralgalaxie. Auf dieser Kombination aus Bildern von Hubble und mehreren erdgebundenen Teleskopen sieht man ausladende Spiralarme, die von offenen Haufen aus hellen blauen Sternen markiert sind, außerdem dunkle Staubbahnen, das diffuse Leuchten von Milliarden blasser Sterne sowie einen kurzen Balken über dem Zentrum der Galaxie.

Viele Astronomen fasziniert jedoch der Ring um den Kern des Galaxienzentrums, den man knapp außerhalb des Zentralbalkens sieht. Die langfristige Stabilität dieses Ringes wird noch erforscht, doch Beobachtungen lassen die Vermutung zu, dass ihre gegenwärtige Helligkeit durch kurze Ausbrüche an Sternbildung zumindest verstärkt wird. M95 ist auch als NGC 3351 bekannt. Sie ist ungefähr 50.000 Lichtjahre groß und 30 Millionen Lichtjahre entfernt. Mit einem kleinen Teleskop sieht man sie im Sternbild Löwe (Leo).

Beinahe Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Annäherung an den Sternhaufen Terzan 5


Videocredit: Nick Risinger (skysurvey.org), DSS, Hubble, NASA, ESA, ESO; Musik: Johan B. Monell

Beschreibung: Kugelsternhaufen dominierten einst die Milchstraße. Vor langer Zeit, als unsere Galaxis entstand, durchstreiften möglicherweise Tausende Kugelsternhaufen unsere Milchstraße. Heute sind weniger als 200 übrig. Im Laufe der Äonen wurden viele Kugelsternhaufen durch wiederholte schicksalshafte Begegnungen untereinander oder mit dem Zentrum der Galaxis zerstört. Die verbleibenden Überreste sind älter als jedes Fossil auf der Erde, ja sogar älter als jede andere Struktur in unserer Galaxis, und sie begrenzen sogar das ungefähre Alter des Universums.

Wenn überhaupt, gibt es nur wenige junge Kugelsternhaufen in unserer Milchstraße, weil die Bedingungen für ihre Entstehung nicht günstig sind. Dieses Video zeigt, wie es aussehen könnte, wenn man von der Erde zum Kugelsternhaufen Terzan 5 reist. Am Ende ist ein Bild des Haufens dargestellt, das mit dem Weltraumteleskop Hubble aufgenommen wurde. Man fand heraus, dass dieser Sternhaufen nicht nur Sterne enthält, die in den frühen Tagen unserer Milchstraße entstanden sind, sondern auch – überraschenderweise – andere, die etwa 7 Milliarden Jahre später bei einem weiteren Sternbildungsausbruch entstanden sind.

Zur Originalseite

Laserangriff auf das galaktische Zentrum

Aus einer geöffneten Teleskopkuppel schießt ein Laserstrahl ins Zentrum der Galaxis. Links oben wölbt sich die Milchstraße.

Bildcredit: Yuri Beletsky (Carnegie Las Campanas Observatory, TWAN), ESO

Warum schießen Leute mit einem mächtigen Laser aufs Zentrum der Galaxis? Zum Glück ist das kein Erstschlag in einem galaktischen Krieg. Vielmehr versuchen Forschende am Very Large Telescope (VLT) in Chile, die Verzerrung der veränderlichen Erdatmosphäre zu messen.

In großer Höhe werden Atome mit Laser angeregt. Dadurch erscheinen sie wie ein künstlicher Stern. Regelmäßige Aufnahmen solcher künstlichen Sterne helfen Forschenden, die Unruhe der Atmosphäre sofort zu messen. Diese Information wird in einen VLT-Teleskopspiegel eingespeist. Der Spiegel wird dann leicht deformiert. So wird die Unschärfe minimiert. Hier beobachtete eine VLT-Einheit das Zentrum unserer Galaxis, daher wurde die Luftunruhe der Erdatmosphäre in diese Richtung gemessen.

Was einen intergalaktischen Krieg betrifft, sind im Zentrum unserer Galaxis keine Verluste zu erwarten. Das Licht dieses mächtigen Lasers wäre in Kombination mit dem Licht unserer Sonne nämlich höchstens so hell wie ein blasser, weit entfernter Stern.

APOD ist in den Weltsprachen Arabisch, Bulgarisch, Chinesisch (Peking), Chinesisch (Taiwan), Deutsch, Englisch (GB), Französisch (Frankreich), Hebräisch, Indonesisch, Japanisch, Katalanisch, Kroatisch, Montenegrinisch, Niederländisch, Polnisch, Portugiesisch (Brasilien), Russisch, Serbisch, Slowenisch, Spanisch, Syrisch, Taiwanesisch, Tschechisch, Türkisch, Türkisch und Ukrainisch verfügbar.

Zur Originalseite

Die Galaxie in einer Kristallkugel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Juan Carlos Munoz

Beschreibung: Auf diesem kreativen Schnappschuss enthält eine kleine Kristallkugel scheinbar eine ganze  Galaxie. Natürlich ist die Galaxie unsere Milchstraße. Ihre leuchtende zentrale Wölbung ist von Graten und Rissen aus interstellarem Staub gezeichnet und umfasst Tausende Lichtjahre. In dieser langen Nacht auf der Südhalbkugel füllte sie den dunklen chilenischen Himmel über dem Paranal-Observatorium.

Für diese Einzelaufnahme war jedoch kein Very Large Telescope nötig. Experimente mit einer Digitalkamera auf Stativ und einer Kristallkugel auf einem Handlauf des ESO-Hotels führten zu dem stimmungsvollen Porträt unserer Heimatgalaxie in einer kosmischen Kristallkugel.

Zur Originalseite

Angriff der Laserleitsterne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: Europäische Südsternwarte / Gerhard Hudepohl (atacamaphoto.com)

Beschreibung: Als sie diese atemberaubende Luftaufnahme fotografierte, musste eine Drohne mächtigen Laserstrahlen ausweichen. Die Begegnung fand über den je 8,2 Meter großen Very Large Telescopes des Paranal-Observatoriums auf dem Planeten Erde statt.

Die Laser feuerten bei einem Test der Leitsterneinrichtung des Observatoriums mit 4 Lasern. Schlussendlich kämpfen sie gegen Unschärfe der Turbulenzen in der Atmosphäre, indem sie künstliche Leitsterne erzeugen. Diese Leitsterne entstehen im Teleskopsichtfeld in großer Höhe durch die Emissionen von Natriumatomen, die von den Laserstrahlen angeregt werden.

Anhand der Leitstern-Bildschwankungen werden Atmosphärenunschärfen in Echtzeit durch die Steuerung eines verformbaren Spiegels im Strahlengang des Teleskops korrigiert. Mit dieser Technik, die als adaptive Optik bezeichnet wird, entstehen Bilder an der Beugungsgrenze des Teleskops. Das entspricht der Schärfe, die man erreichen würde, wenn das Teleskop im Weltraum wäre.

Zur Originalseite

Bänder und Perlen der Spiralgalaxie NGC 1398

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Europäische Südsternwarte

Beschreibung: Warum läuft um das Zentrum mancher Spiralgalaxien ein Ring? Um das Zentrum der Spiralgalaxie NGC 1398 läuft nicht nur ein Ring aus perlartigen Sternen, Gas und Staub, sondern ein Balken aus Sternen und Gas verläuft durch das Zentrum, und die Spiralarme weiter außen wirken wie Bänder.

Dieses Bild wurde mit dem Very Large Telescope der ESO am Paranal-Observatorium in Chile fotografiert, die prächtige Spirale ist eindrucksvoll detailreich aufgelöst. NGC 1398 ist etwa 65 Millionen Lichtjahre entfernt. Das bedeutet, dass das heute für uns sichtbare Licht dieser Galaxie entstand, als die Dinosaurier von der Erde verschwanden.

Die fotogene Galaxie ist mit einem kleinen Teleskop im Sternbild Chemischer Ofen (Fornax) zu sehen. Der Ring um das Zentrum ist wahrscheinlich eine sich ausdehnende Dichtewelle aus Sternbildung, ausgelöst durch eine gravitative Begegnung mit einer weiteren Galaxie oder durch die Gravitationsasymmetrien der Galaxie.

Zur Originalseite

Immersive Visualisierung des galaktischen Zentrums Sgr A*

Videocredit: NASA, CXC, Pontifical Catholic Univ. of Chile, C. Russell et al.

Was sieht man, wenn man aus dem Zentrum unserer Galaxis nach außen schaut? Dieses Video zeigt zwei wissenschaftlich ermittelte Möglichkeiten. Das immersive Video umfasst 360 Grad. Man kann es in jede Richtung drehen. Die Computersimulation basiert auf Infrarotdaten des Very Large Telescope (VLT) der ESO in Chile und Röntgendaten des NASARöntgenobservatoriums Chandra im Orbit.

Im Video erreicht ihr zu Beginn rasch Sgr A* (Sagittarius A Stern). Dort ist das sehr massereiche Schwarze Loch im Zentrum der Galaxis. Wenn ihr dann nach außen seht, zeigt die 500-Jahre-Zeitraffersimulation leuchtendes Gas und viele Lichtpunkte, die um euch kreisen. Viele der Punkte sind junge Wolf-Rayet-Sterne. Von diesen strömen sichtbare heiße Winde in die umgebenden Nebel.

Wolken, die näher kommen, werden länglich. Gleichzeitig fallen Objekte, die zu nahe kommen, hinein. Gegen Ende des Videos wiederholt sich die Simulation. Diesmal stößt die dynamische Region um Sgr A* heißes Gas aus, das die näher kommende Materie zurückstößt.

Zur Originalseite