Die Winde der Erde


Bildcredit und Bildrechte: Cameron Beccario, earth.nullschool.net;
Daten und Bearbeitung (verkürzt): GFS und US National Weather Service (NOAA), Center for Climate Simulation (NASA)

Beschreibung: Wohin weht der Wind? Diese Karte verrät das und viel mehr, auch für Ihren Standort auf dem Planeten Erde. Die dynamische Karte kombiniert viele Quellen weltweiter Satellitendaten und Prognosen von Hochleistungsrechnern, die alle drei Stunden aktualisiert werden. Helle Wirbel zeigen meist Tiefdrucksysteme mit hoher Windgeschwindigkeit, etwa dramatische Zyklone, Wirbelstürme und Taifune.

Der Erdball kann zwar mit der Maus gedreht werden, doch für volle Interaktivität – zum Beispiel die Möglichkeit zu vergrößern – klicken Sie auf das Wort „earth“ links unten oder folgen Sie dem Link http://earth.nullschool.net/. Mit dem „earth“-Bedienfeld kann man zusätzlich Temperatur, Luftfeuchtigkeit, Luftdruck, Niederschlag und Kohlendioxidkarten einblenden und sogar zu Windgeschwindigkeiten in größerer Höhe oder Meeresströmen wechseln. Besonders in Zeiten rascher Veränderung können diese Karten veraltet oder ungenau sein.

Zur Originalseite

Five hundred meter Aperture Spherical Telescope

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Jeff Dai (TWAN)

Beschreibung: Das Five-hundred-meter Aperture Spherical Telescope (FAST) ist in ein natürliches Becken eingebettet. Es liegt in der abgelegenen, bergigen Provinz Guizhou im Süden von China. Dieses Foto zeigt das neue Radioteleskop mit dem Spitznamen Tianyan oder „Auge des Himmels“. Es wurde am 25. September kurz vor Beginn der Testphase für den Betrieb fotografiert. Seine aktive Oberfläche kann ausrichten und fokussieren. Seine gewaltige Parabolantenne wurde aus 4450 einzelnen dreieckigen Paneelen konstruiert. Mit einem Antennendurchmesser von 500 Metern ist FAST das größte verkleidete Radioteleskop auf dem Planeten Erde, das aus nur einem Spiegel besteht. FAST erforscht das Universum in Radiowellenlängen. Es wird Emissionen von Wasserstoff in der Milchstraße und fernen Galaxien finden. Es entdeckt blasse galaktische und extragalaktische Pulsare und sucht nach möglichen Radiosignalen von Außerirdischen.

Zur Originalseite

Saturn von oben

Saturn ist von schräg oben zu sehen, die Ringe füllen von links nach rechts die ganze Bildbreite. Am Pol des goldbraun beleuchteten Planeten ist eine sechseckige Wolkenstruktur.

Bildcredit: NASA, JPL-Caltech, Space Science Institute

Dieses Bild von Saturn hätte man auf der Erde nicht fotografieren können. Kein Bild, das auf der Erde fotografiert wurde, könnte einen Blick auf Saturns Nachtseite und seinen Schatten auf den Saturnringen zeigen. Die Erde ist der Sonne viel näher als Saturn, daher ist von der Erde aus nur die Tagseite des Ringplaneten sichtbar.

Die Raumsonde Cassini kreist derzeit um Saturn. Das Bildmosaik wurde zu Beginn des Jahres von der Raumsonde aufgenommen. Danach filmte sie ein 44-Stunden-Video des sich drehenden Planeten. Die schönen Saturnringe sind ganz ausgebreitet. Man sieht Details der Wolken und das Sechseck um den Nordpol.

Die Mission Cassini hat ihr letztes Jahr erreicht. Nächsten September taucht die Raumsonde bei einem geplanten Manöver in Saturns Atmosphäre.

Zur Originalseite

Riesiger Strahlenblitz über China

Hinter einer Gruppe an Leuten mit Teleskopen ist der Himmel über einer Wolke am Horizont sternklar. Aus der Wolke schießt ein Strahlenblitz hinauf, der unten hell leuchtet, nach oben hin in Purpur und später Rot übergeht und sich nach oben hin büschelartig auffächert.

Bildcredit und Bildcredit: Phebe Pan

Das ist kein Meteor. Diese Leute beobachteten den Meteorstrom der Perseïden. Dabei geschah etwas Unerwartetes: Ein riesiger Strahlenblitz brach aus einer nahen Wolke hervor. Es war blitzschnell wieder vorbei – in weniger als einer Sekunde. Doch zum Glück wurde es von einer Digitalkamera fotografiert, die bereits aktiv war.

Riesige Strahlen sind eine seltene Blitzart. Sie wurden erst vor wenigen Jahren formal anerkannt. Dieses hoch aufgelöste Farbbild entstand in der Nähe des chinesischen Gipfels Shikengkong. Es ist eins der besten Bilder von diesem ungewöhnlichen Phänomen, die es bisher gibt. Das Ereignis wurde anscheinend auch von einem Fotografen dokumentiert, der weiter entfernt war.

Der riesige Strahlenblitz beginnt in einer Gewitterwolke in der Nähe. Er verläuft aufwärts zur Ionosphäre der Erde. Die Natur der riesigen Strahlenblitze wird weiterhin erforscht. Auch ihre mögliche Verwandtschaft mit anderen Arten transienter Leuchterscheinungen (TLEs) wie blaue Strahlenblitzen und roten Kobolden ist noch unklar.

Zur Originalseite

Tutulemma: Sonnenfinsternis-Analemma

Über einem Strand ist der Himmel nur am Horizont dämmrig erhellt, der Himmel ist dunkel. Dort leuchtet die Korona der Sonne bei einer totalen Sonnenfinsternis. Nach oben und unten verläuft die 8-förmige Schleife eines Analemmas.

Bildcredit und Bildcredit: Cenk E. Tezel und Tunç Tezel (TWAN)

Wie ändert sich die Position der Sonne, wenn man jeden Tag zur selben Zeit hinausgeht und sie fotografiert? Mit viel Planung und Aufwand gelingt so eine Bildserie. Die Sonne folgt im Laufe des Jahres einer Schleife in Form einer Acht. Man nennt sie ein Analemma. Zur Wintersonnenwende auf der Nordhalbkugel der Erde erschien die Sonne am unteren Rand des Analemmas. Analemmata sehen auf unterschiedlichen Breiten jeweils anders aus. Auch Analemmata von verschiedenen Tageszeiten unterscheiden sich.

Mit mehr Planung und Aufwand enthält die Serie ein Bild mit einer totalen Sonnenfinsternis. Oben seht ihr ein Analemma mit Sonnenfinsternis. Der Fotograf prägte dafür das Wort Tutulemma. Es basiert auf dem türkischen Begriff für Finsternis. Die Bildfolge für das Komposit wurde ab 2005 in der Türkei fotografiert. Das Bild für den Vordergrund der Serie entstand bei der totalen Phase der Sonnenfinsternis am 29. März 2006 im türkischen Side. Bei der Totalität leuchtete rechts unten die Venus.

Wenn ihr ein Tutulemma in den USA fotografieren möchtet, das mit der totalen Sonnenfinsternis nächsten August endet, solltet ihr jetzt beginnen.

Zur Originalseite

Das Universum färben

Das Bild zeigt einen berühmten Holzschnitt. Eine Person kniet am Rand einer Kugel auf der Erde. Die Hand mit einem Stab liegt vorne am Boden. Der Kopf ragt durch eine Kugel, auf der Sterne, Sonne und Mond angebracht sind. Dahinter sind Wolken, Ringe und Zahnräder angebracht.

Bildcredit: unbekannt

Es ist sicher lustig, das Universum zu färben. Wenn euch das Spaß macht, nehmt fürs Erste diese berühmte astronomische Illustration. Ihr selbst oder eure Freunde, Eltern oder Kinder können es ausdrucken oder sogar digital ausmalen.

Vielleicht interessiert euch, dass der Künstler unbekannt ist, obwohl diese Illustration in den letzten 100 Jahren an vielen Stellen auftauchte. Außerdem hat die Arbeit keinen Namen, der anerkannt wurde. Habt ihr eine gute Idee? Das Bild erschien erstmals 1888 in einem Buch von Camille Flammarion. Sie veranschaulicht, dass aktuelle Ansichten der Menschheit häufig durch neue Erkenntnisse ersetzt werden.

Zur Originalseite

In einem Daya-Bay-Antineutrinodetektor

Blick in den Daya-Bay-Antineutrino-Detektor bei Hongkong und Shenzhen

Bildcredit und Bildrechte: DOE, Berkeley LabRoy Kaltschmidt, Fotograf

Warum gibt es im Universum mehr Materie als Antimaterie? Man wollte diesen Aspekt der Teilchenphysik besser verstehen. Daher starteten Energie-Ministerien von China und den USA das Daya-Bay-Experiment. Unter dickem Gestein stehen die acht Daya-Bay-Detektoren. Sie beobachten Antineutrinos, die von sechs Kernreaktoren in der Nähe ausgesandt werden. Ihr Standort liegt etwa 50 Kilometer nordöstlich von Hongkong in China.

Der Blick mit einer Kamera in einen Detektor von Daya Bay zeigt Photonen-Sensoren. Sie messen das zarte Licht, das entsteht, wenn die Antineutrinos mit Flüssigkeiten im Detektor wechselwirken.

Erste Ergebnisse zeigen, dass der Anteil einer Art Antineutrinos, die sich in andere verwandeln, unerwartet hoch ist. Falls sich das bestätigt, könnte das bedeuten, dass es eine noch unentdeckte Art Neutrinos gibt. Das würde das Verständnis der Menschheit der grundlegenden Wechselwirkungen von Teilchen in den ersten Sekunden nach dem Urknall verändern.

Zur Originalseite

Merkurtransit in 3D

Im Bild sind zwei Abbildungen der Sonne, vor denen der Planet Merkur schwebt. Durch Schielen kann man die Bilder in Einklang bringen, dann sieht man die Anordnung dreidimensional.

Bildcredit und Bildrechte: Stefan Seip (TWAN)

Am 9. Mai zog der innerste Planet Merkur vor der Sonne vorbei. Die Bilder zeigen das Ereignis zwar in nur zwei Dimensionen. Doch das Stereopaar bietet einen freisichtigen dreidimensionalen Blick auf den Transit. Die Bilder wurden in einem zeitlichen Abstand von 23 Minuten fotografiert. Für die Darstellung wurden sie so gedreht, dass Merkurs Position auf den beiden Bildern waagrecht versetzt ist.

Durch Merkurs Bahnbewegung entstand eine übertriebene Parallaxe. Sie simuliert den Blick durch ein Fernglas. Merkurs Bahngeschwindigkeit beträgt 47,4 km pro Sekunde. Man kann sie durchaus als flott bezeichnen. Daher legte der Planet zwischen den beiden Aufnahmen mehr als 65.000 km zurück.

Wenn man die Augen entspannt, bis sich beide Bilder decken, sieht man Merkurs winzige Silhouette nach vorne gerückt. Probiert es aus! Es hilft, wenn man den Text unter dem Bild zur Deckung bringt.

Zur Originalseite