Die Einsteinkreuz-Gravitationslinse

Die sehr blasse Galaxie im Bild hat scheinbar vier sehr helle Kerne. Diese gehören jedoch nicht zur Galaxie, sondern sind das Licht eines Quasars, der weit dahinter liegt. Das Objekt ist als Einsteinkreuz bekannt.

Bildcredit und Lizenz: NSF, NOIRLab, AURA, WIYN; Bearbeitung: J. Rhoads (Arizona State U.) et al.

Die meisten Galaxien haben nur einen Kern. Hat diese Galaxie vier davon? Die Antwort auf diese Frage scheint eigenartig, aber der Schein trügt. Astronom*innen schließen aus diesem Bild, dass der Kern der umgebenden Galaxie überhaupt nicht sichtbar ist. Vielmehr stammt das Licht des „vierblättrigen Kleeblatts“ in der Mitte eigentlich von einem Quasar, der dahinter liegt.

Das Gravitationsfeld der vorne liegenden Galaxie lenkt die Lichtstrahlen des weiter entfernten Quasars um. Wir kennen das auch von optischen Linsen. Es kann dazu führen, dass man von einem Objekt vier Einzelbilder sieht. Diese Art von Trugbild erhalten wir nur, wenn ein Quasar und das Zentrum einer massereichen Galaxie genau in einer Sichtlinie liegen.

Wir kennen das Phänomen ist als Gravitationslinseneffekt. Die oben gezeigte Galaxie ist das Einsteinkreuz. Die einzelnen Abbildungen im Einsteinkreuz sind unterschiedlich hell, was vielleicht noch verwunderlicher ist. Einzelne Sterne der vorderen Galaxie üben durch ihre Gravitation einen zusätzlichen Mikrolinseneffekt aus, was die Helligkeit verstärkt.

Portal ins Universum: APOD-Zufallsgenerator

Zur Originalseite

Vollmondlicht

Über drei Hügelkuppen steht der fast volle Mond. Man erkennt deutlich die dunklen Flecken. Am oberen Rand verläuft der Terminator, dort sind ein paar Krater erkennbar. Zwischen zwei Kuppen steht ein Beobachter mit Teleskop.

Bildcredit und Bildrechte: Zhengjie Wu und Jeff Dai (TWAN)

Bei Vollmond ist der Mond am hellsten. Heute Nacht könnt ihr im Licht des ersten Vollmonds im Jahr 2026 stehen. Der Vollmondzeitpunkt ist am 3. Januar um 10:03 Uhr Weltzeit.

Etwa 7 Stunden später, um 17:16 Uhr Weltzeit, erreicht die Erde den sonnennächsten Punkt ihrer elliptischen Umlaufbahn um die Sonne im Jahr 2026: das Perihel. Der Januar-Vollmond war auch nicht weit vom Punkt seiner größten Annäherung an die Erde entfernt, dem Perigäum. In diesem Mondphasenzyklus fand das Perigäum des Mondes am 1. Januar um 21:44 Uhr Weltzeit statt.

Ihr könnt auch den Planeten Jupiter sehen, der heute Nacht fast seine größte Helligkeit für 2026 erreicht. Er steht am Himmel nahe beim Vollmond. Vergesst aber nicht, nach den seltenen, hellen Feuerkugeln des Sternschnuppenstroms der Quadrantiden Ausschau zu halten, wenn ihr draußen den Nachthimmel beobachtet!

Zur Originalseite

NanoSail-D2

Die Bilder von NanoSail-D2 entstanden mit einem händisch nachgeführten Teleskop. Obwohl das Objekt sehr weit entfernt ist, sind viele Details erkennbar.

Bildcredit und Bildrechte: Ralf Vandebergh

Am 20. Januar 2011 entfaltete die NASA mit NanoSail-D2 ein sehr dünnes und stark reflektierendes Segel im All. Es war 10 Quadratmeter groß. Damit schuf man das erste Raumfahrzeug mit Sonnensegel in einer erdnahen Umlaufbahn. Das Segeln durch den Weltraum wurde oft als Science-Fiction angesehen. Es wurde bereits vor 400 Jahren vom Astronomen Johannes Kepler vorgeschlagen. Er beobachtete, wie der Sonnenwind Kometenschweife antrieb.

Moderne Raumfahrzeuge mit Sonnensegel nutzen den geringen, aber stetigen Druck des Sonnenlichts als Antrieb. Dazu zählen NanoSail-D2, Japans interplanetares Raumfahrzeug IKAROS oder Lightsail A der Planetary Society.

Das Sonnensegel von NanoSail-D2 glitzerte im Sonnenlicht, als es die Erde umkreiste. Es war regelmäßig hell und mit bloßem Auge sichtbar. Diese sehr detaillierten Bilder entstanden, indem der Fotograf das umlaufende Raumschiff mit Sonnensegel mit einem kleinen Teleskop händisch verfolgte.

Zur Originalseite

Polar-Korona

Panoramaufnahme einer isländischen Landschaft mit See im Vordergrund. Am Himmel ist sehr helles Polarlicht in rot, grün, und violett zu sehen.

Bildcredit und Bildrechte: Roi Levi

Dank des Maximums des 25. Sonnenzyklus war das Jahr 2025 großartig für Nordlichter (und Südlichter). Die starke Aktivität der Sonne dürfte im Jahr 2026 noch andauern. Genießt dieses spektakuläre Polarlicht, während ihr den Beginn des neuen Jahrs feiert. Das Nordlicht erfüllte den sternenbedeckten Nachthimmel über dem Kirkjufell in Island.

Die eindrucksvolle Polarlicht-Korona strahlte während eines starken geomagnetischen Sturms. Er entstand im März 2025 durch intensive Sonnenaktivität während der Tagundnachtgleiche. Wenn ihr direkt von unten in die Schleier eines Polarlichts blickt, könnt ihr so eine Korona sehen. Das Panorama der nordischen Landschaft und des eindrucksvollen Schauspiels am Himmel besteht aus 21 Einzelbildern.

Zur Originalseite

HH-222: Der Wasserfall-Nebel

Die rote Gestalt, die scheinbar von oben nach unten fließt, erinnert an einen Wasserfall. Tatsächlich ist es eine Stoßwelle, die nach links oben geschoben wird.

Bildcredit und Bildrechte: Mike Selby

Der Wasserfall-Nebel wird offiziell als Herbig-Haro 222 bezeichnet. Er liegt im Gebiet von NGC 1999 im großen Orion-Molekülwolkenkomplex. Wie er entstanden ist, wird nach wie vor erforscht. Die längliche Gaswolke reicht über zehn Lichtjahre. Sie erinnert an einen hohen Wasserfall auf der Erde.

Neueste Beobachtungen zeigen, dass HH-222 wahrscheinlich eine gewaltige, gasförmige Bugwelle ist, ähnlich wie eine Wasserwelle vor dem Bug eines schnellen Schiffs. Der Ursprung dieser Stoßwelle ist vermutlich ein Strahl, der aus dem Mehrfach-Sternsystem V380 Orionis strömt. Das Sternsystem liegt links außerhalb des Bildes. Das Gas fließt also nicht den Wasserfall entlang. Stattdessen bewegt sich die ganze Struktur im Bild nach rechts oben.

Der Wasserfall-Nebel ist etwa 1500 Lichtjahre entfernt und liegt im Sternbild Orion. Diese Aufnahme entstand zu Beginn des Monats am El-Sauce-Observatorium in Chile.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Ein künstlicher Komet

Die weißen Streifen, die vom Horizont nach links aufsteigen und sich nach oben auffächern, erinnern an einen Kometen. An derselben Stelle steigt die Milchstraße nach rechts auf. Der sternklare Himmel schillert in bunten Farben.

Bildcredit und Bildrechte: Wang Chao

Kann der Schweif eines Kometen das auch? Nein! Und das hier ist nicht der Schweif eines Kometen. Das Bild zeigt einer Gruppe von Satelliten, die im Juni gemeinsam die Erde umkreisten, als geschickt überlagerte Zeitraffersequenz. Es handelt sich um Kommunikationssatelliten von Starlink in einem niedrigen Erdorbit. Sie reflektierten kurz vor Sonnenaufgang das Sonnenlicht in die Innere Mongolei in China.

Das menschliche Auge sieht die Satelliten als Punkte. Doch die Kamera belichtete 20 Sekunden, daher ziehen sie kurze Streifen. Derzeit kreisen mehr als 9.000 Satelliten von Starlink im Orbit. Fast jede Woche starten weitere. Auch andere Satellitenkonstellationen sind in Planung.

Zur Originalseite

Der Krebsnebel M1

Vor einem schwarzen, sternenbesetzten Hintergrund steht eine ovale Wolke mit faseriger Struktur. DIe Fasern leuchten weiß, rot und blau und der Kernbereich der Wolke leuchtet diffus gelblich.

Bildcredit und Bildrechte: Alan Chen

Solch ein Durcheinander hinterlässt ein Stern, wenn er explodiert. Der Krebsnebel entstand in einer Supernova, die man im Jahr 1054 beobachtete. Ihn durchziehen rätselhafte Filamente. Diese Fasern sehen nicht nur ziemlich kompliziert aus, sie haben scheinbar auch weniger Masse, als die Supernova ausgeworfen hat. Zudem scheinen sie sich schneller auszudehnen, als von einer freien Explosion zu erwarten ist.

Dieses Bild hat ein Amateurastronom in Leesburg in Florida in den USA in drei Nächten des letzten Monats fotografiert. Dazu nahm er Einzelbilder in den drei Grundfarben auf. Zusätzliche Details fing er im charakteristischen Leuchten des Wasserstoffs ein.

Der Krebsnebel ist rund 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar. Das ist ein Neutronenstern, der so viel Masse wie die Sonne hat, dabei aber nur so groß wie eine Stadt ist. Der Krebspulsar dreht sich einer Sekunde rund 30-mal um die eigene Achse.

Zur Originalseite

NGC 1898: Kugelsternhaufen in der Großen Magellanschen Wolke

Ein bunter Kugelsternhaufen mit vielen roten und blauen Sternen füllt das Bild. In der Mitte ist ein helles Zentrum, doch auch der Hof ist voller Sterne.

Bildcredit: ESA / Hubble und NASA

Juwelen scheinen nicht hell – nur Sterne. Fast jeder Fleck in diesem Schmuckkästchen auf einem Foto des Weltraumteleskops Hubble ist ein Stern. Es gibt Sterne, die röter sind als unsere Sonne und andere, die blauer sind – doch sie alle sind weiter entfernt. Das Licht braucht 8 Minuten von der Sonne, um die Erde zu erreichen. NGC 1898 ist so weit weg, dass sein Licht etwa 160.000 Jahre benötigt, um hier anzukommen.

Der große Ball aus Sternen wird NGC 1898 genannt und ist ein Kugelsternhaufen. Er befindet sich im Zentralbalken der Großen Magellanschen Wolke (GMW), einer Satellitengalaxie unserer Milchstraße.

Das mehrfarbige Bild entstand aus vielen Bändern von Infrarot bis Ultraviolett. Es wurde aufgenommen, um zu entscheiden, ob alle Sterne von NGC 1898 gleichzeitig entstanden oder unterschiedlich alt sind. Nun häufen sich die Hinweise, dass in den meisten Kugelsternhaufen die Sterne in Wellen entstehen. Insbesondere die Sterne von NGC 1898 entstanden alle kurz nach einer Annäherung der Kleinen Magellanschen Wolke (KMW) an unsere Milchstraße vor langer Zeit.

Weltraumteleskope – aktuell: Wohin blicken Hubble und Webb gerade?

Zur Originalseite