Kollision beim Asteroiden Dimorphos

Videocredit: ASI NASA, Johns Hopkins APL, DART, LICIACube, LUKE, IOP

Was macht diese Kollision so ungewöhnlich? Im Jahr 2022 testete die NASA eine Technologie, die vielleicht einmal die Erde retten kann: Das kleine Raumschiff DART kollidierte absichtlich mit dem kleinen Asteroiden Dimorphos. Er ist der Mond des größeren Asteroiden Didymos.

Man erwartete, dass sich die Umlaufbahn von Dimorphos durch den Zusammenstoß verändert. Vielleicht kann man in Zukunft die Erde mit einer ähnlichen Vorgangsweise vor einem gefährlichen Asteroiden bewahren. Die Analyse neuer Daten zeigt aber, dass die Sache anders ausging als erwartet. Den Grund dafür suchen Wissenschaftler noch.

Das Zeitraffer-Video stammt von der abgesetzten LICIACube-Kamera LUKE. Es zeigt, wie sich das Trümmerfeld nach der Kollision etwa 250 Sekunden lang ausbreitet. Didymos fliegt vorne unbehelligt durch das Bild.

Erst 2026 erreicht die europäische Raumfahrtmission Hera die beiden Asteroiden. Sie soll vor Ort drei kleine Raumschiffe absetzen. Diese sollen den Ausgang der Kollision weiter untersuchen.

Zur Originalseite

Transit von Titans Schatten

Der Planet Saturn mit schmalen, dunklen Ringen liegt mitten im Bild. Oben hat er einen schwarzen Fleck, es ist der Schatten des Mondes Titan, der links über dem Planeten steht.

Bildcredit und Bildrechte: Volodymyr Andrienko

Nur alle etwa 15 Jahre liegen die Ringe des Saturn genau in unserer Sichtlinie. In dieser Zeit ist es für uns Erdlinge besonders schwer, das wunderschöne Ringsystem des Gasriesen zu sehen. Dafür macht uns dieser Blickwinkel möglich, ein anderes Himmelsspektakel besser zu sehen: Transite der Saturnmonde und ihrer dunklen Schatten, die über die helle Scheibe des Planeten streichen.

Der größte Saturnmond Titan ist der Körper, den man am einfachsten so sehen kann. Diese Aufnahme stammt vom 18. Juli 2025. Darauf sieht man den Mond selbst links oben. Er wirft einen dunklen, kreisförmigen Schatten auf Saturns Wolkenbänder. Titan-Transite haben zurzeit überhaupt Hochsaison: Alle 16 Tage können sie beobachtet werden – passend zur Umlaufperiode des Mondes.

Der letzte Schattentransit findet am 6. Oktober statt. Noch bis zum 25. Jänner 2026 kann man durch Teleskope beobachten, wie die schwach leuchtende Mondscheibe über Saturn zieht.

Zur Originalseite

ISS trifft Saturn

Neben dem Planeten Saturn, der rechts mit schmalen Ringen zu sehen ist, sieht man links die Internationale Raumstation ISS als verschwommene Gestalt.

Bildcredit und Bildrechte: A.J. Smadi

Diesen Monat geht Saturn um Mitternacht auf. Seine Ringe sind derzeit so ausgerichtet, dass wir von der Erde aus auf ihre Kante blicken.

In den frühen Morgenstunden am 6. Juli hat Saturn kurz mit der Internationalen Raumstation (ISS) für ein Foto posiert. Diese besondere Aufnahme war nur in einer Straße in Washington (USA) möglich. Für dieses Bild war viel Planung notwendig. Es entstand aus mehreren Einzelbildern aus einer Videoaufnahme und zeigt den Moment, als Saturn und die ISS sich im Teleskop am nächsten waren. Da sich die ISS in einem niedrigen Orbit befindet, beträgt der tatsächliche Abstand zwischen ihr und dem Gasriesen beinahe 14 Milliarden Kilometer! Obwohl die scheinbare Größe vergleichbar ist, war die ISS um vieles heller als Saturn. Die Helligkeit des Planeten wurde deshalb auf dem fertigen Bild erhöht.

Nur durch überaus präzise zeitliche Planung und die Wahl des genauen Beobachtungsortes war dieses Foto einer ISS-Saturn-Konjunktion überhaupt möglich.

Zur Originalseite

Das Zentrum der Spiralgalaxie M61

Die Galaxie M61 oder NGC 4303 im Virgo-Galaxienhaufen ist direkt von oben sichtbar. Es wirkt, als wäre innen eine eigene kleine Spiralgalaxie. Außen herum verlaufen ausschweifende Spiralarme mit blauen Sternhaufen und rosaroten Sternbildungsgebieten.

Bildcredit: NASA, ESA, Hubble, ESO; Bearbeitung und Bildrechte: Robert Gendler

Befindet sich hier tatsächlich eine Spiralgalaxie in der Mitte einer Spiralgalaxie? Nun, fast! Dieses detaillierte Porträt entstand aus Aufnahmen des Weltraumteleskops Hubble, der Europäischen Südsternwarte und etlicher kleiner Teleskope auf der Erde. Es zeigt die Spiralgalaxie Messier 61 (M61), wir sehen sie direkt von oben. Auffallend ist das helle Zentrum der Galaxie. M61 ist astronomisch gesehen schon fast nahe. Sie ist lediglich 55 Millionen Lichtjahre von uns entfernt und befindet sich im Virgo-Galaxienhaufen. Eine andere Bezeichnung ist NGC 4303.

M61 ist ein Beispiel für eine Balkenspiralgalaxie, ähnlich wie unsere Galaxis, die Milchstraße. Die Galaxie zeigt die üblichen Spiralarme, die vom Zentrum auslaufen, kosmischen Staub, rosarote Regionen mit Sternbildung und junge blaue Sternhaufen.

Der Kern der Galaxie enthält ein aktives, sehr massereiches Schwarzes Loch. Es ist von einer hellen spiralförmigen Struktur umgeben. Die Materie in dieser Gegend bewegt sich zum Zentrum hin. Durch die Sternentstehung, die hier angeregt wird, erscheint diese Gegend wie eine eigene, separate Spiralgalaxie.

Zur Originalseite

W5: Säulen der Sternbildung

Der Nebel im Bild wurde in Infrarotlicht abgebildet und wirkt daher verfremdet. Mittig ist eine höhlenartige Struktur, deren Form an ein Herz erinnert. Sie wird von braunweißen Nebelfetzen begrenzt. Es ist der Sternbildungskopplex W5 im Sternbild Kassiopeia.

Bildcredit: NASA, WISE, IRSA; Bearbeitung und Bildrechte: Francesco Antonucci

Woher kommen Sterne? Bilder von Regionen, in denen Sterne entstehen, wurden mit der Infrarotkamera des Wide Field Infrared Survey Explorer (WISE, später NEOWISE) der NASA aufgenommen. Diese Aufnahmen sollen helfen, das Rätsel zu lösen. Dieses Beispiel zeigt die Region W5. Massereiche Sterne befinden sich im Zentrum von Hohlräumen in Gas- und Staubnebeln. Sie sind älter als Sterne am Rand dieser Hohlräume.

Eine mögliche Ursache für den Altersunterschied liegt darin, dass die massereichen Sterne im Zentrum die Entstehung weiterer Sterne verursachen. Diese forcierte Sternentstehung findet dann statt, wenn heißes Gas aus dem Inneren das kühlere Gas der umgebenden Wolke zu dichten Knoten zusammendrückt. Diese Knoten werden schließlich so dicht, dass sie unter der Schwerkraft zu Sternen kollabieren.

Dieses Bild, dessen Farben wissenschaftlich begründet sind, zeigt spektakuläre Säulen, die langsam durch das Entweichen von heißem Gas verdampfen. W5 ist auch als Westerhout 5 oder IC 1848 bekannt. Zusammen mit dem Nebel IC 1805 bildet W5 eine komplexe Region mit Sternentstehung. Sie wird gemeinhin auch Herz- und Seelennebel genannt. Im Bild sieht man einen Teil von W5. Er reicht über etwa 2000 Lichtjahre und enthält viele Säulen, in denen Sterne entstehen. Der Nebel ist 6500 Lichtjahre von uns entfernt und liegt im Sternbild Kassiopeia.

Zur Originalseite

Kosmische Funde zwischen Skylla und Charybdis

In einem Sternenfeld mit ein paar schwachen hellbraunen Staubwolken liegt in der Mitte eine große Wolke mit braunem Staub und blauen Gashüllen.

Bildcredit und Bildrechte: Louis LEROUX-GÉRÉ; Text: Ogetay Kayali (Michigan Tech U.)

Kommt euch dieses himmlische Objekt bekannt vor? Höchstwahrscheinlich nicht: Es handelt sich nämlich um ein Erstentdeckungsbild! Massereiche Sterne bilden schwere Elemente in ihrem Inneren und explodieren schließlich als Supernova. Die Überreste kühlen relativ schnell ab und verblassen. Dadurch sind sie sehr schwer zu entdecken.

Genau nach solchen schwachen Überresten von Supernovae sucht eine Gruppe von Amateur-Astrofotografen*. Sie stöbern in mehreren Durchmusterungen des Himmels nach Spuren dieser Ereignisse. Das Ergebnis ist dieses weltweit erste Foto vom Supernova-Überrest G115.5+9.1. Die Entdecker tauften den Überrest Skylla. Das schwach leuchtende Objekt liegt im Sternbild des mythischen Königs Kepheus von Aithiopia.

Die Emission von Wasserstoffatomen wird hier in Rot gezeigt. Sauerstoff zeigt leichte Spuren von Blau. Überraschenderweise befindet sich gleich noch eine Entdeckung im Bild im rechten oberen Eck. Dort ist ein bisher unbekannter Kandidat für einen planetarischen Nebel. Passend zu Skylla wurde der Nebel Charybdis getauft. Es ist eine Anlehnung an die Redewendung „Gefangen zwischen Skylla und Charybdis“ aus Homers Odyssee.

Zur Originalseite

New Horizon zeigt den Flug über Charon

Videocredit: NASA, JHUAPL, SwRI, P. Schenk und J. Blackwell (LPI); Musik: Juicy by ALBIS

Was wäre, wenn wir über Plutos Mond Charon fliegen könnten – was würden wir sehen? Genau diesen Flug hat das Raumschiff New Horizons im Jahr 2015 geschafft. Die Raumsonde sauste an Pluto vorbei und über die Oberfläche von Charon hinweg, während ihre Kameras so viele Aufnahmen wie möglich machten.

Die Aufnahmen erlaubten eine digitale Rekonstruktion der Oberfläche von Charon. Dadurch war es möglich, einen Flug über den Mond zu simulieren. Das 1-minütige Video zeigt so einen Flug. Das Höhenprofil und Farben der Oberfläche wurden digital verstärkt.

Die Reise beginnt an einem weiten Graben, der vollkommen verschiedene Landschaftstypen auf Charon trennt. Dieser Graben entstand wahrscheinlich, als Charon nach seiner Entstehung einfror. Schon bald schwenkt unser Flug nach Norden und führt nun über eine farbige Tiefebene, die den Spitznamen Mordor erhielt. Diese Ebene – so eine Hypothese – ist der ungewöhnliche Überrest eines uralten Einschlags. Die Reise geht weiter über eine außerirdische Landschaft. Sie ist voll von noch nie zuvor gesehen Kratern, Gebirgen und Spalten.

Die robotische Raumsonde New Horizons besitzt zu viel Schwung, um jemals wieder zu Pluto und Charon zurückzukehren. Es befindet sich derzeit auf seinem Weg aus dem Sonnensystem heraus.

Zur Originalseite

Gefecht der Galaxien: M81 versus M82

Links oben ist die prachtvolle Spiralgalaxie M81 mit ausgeprägten Sternhaufen und Sternbildungsgebieten. Rechts unten befindet sich die irreguläre Galaxie M82, ein roter Nebel wird von einem weißen Balken gekreuzt.

Bildcredit und Bildrechte: Kollaboratives Astrofotografie-Team (CAT)

Im oberen linken Bildeck befindet sich die Spiralgalaxie M81. Sie ist von blauen Spiralarmen umgeben und mit roten Nebeln übersäht. Unten rechts sieht man die unregelmäßige Galaxie M82. Dieses wunderschöne Bild zeigt die beiden riesigen Galaxien. Sie halten sich durch ihre Schwerkraft gegenseitig in einem Kampf, der schon mehrere Milliarden Jahre dauert.

Eine nahe Begegnung, während der sich die beiden Galaxien durch ihre Schwerkraft dramatisch beeinflussen, zieht sich über mehrere Millionen Jahre hin. Beim letzten nahen Vorbeiflug hat die Schwerkraft von M82 Dichtewellen in M81 angeregt. Diese verursachten die dichten Spiralarme, die jetzt in M81 zu sehen sind. Umgekehrt wurde auch M82 nachhaltig beeinflusst. Deshalb gibt es viele Regionen mit aktiver Sternentstehung in der irregulären Galaxie. Auch energiereiche Gaswolken befinden sich darin, sie senden Röntgenstrahlung aus.

Von der Erde aus sehen wir diesen Kampf durch das schwache Leuchten des „galaktischen Zirrus“. Es ist ein noch kaum untersuchtes Nebelgebiet in unserer Milchstraße. Der Kampf selbst wird noch länger andauern: Erst in einigen Milliarden Jahren werden die beiden Galaxien in einer großen Galaxie verschmolzen sein.

Zur Originalseite