IC 418: Der Spirographen-Nebel

Der Nebel im Bild ist leicht oval und wirkt, als wäre er mit einem Spielzeug gezeichnet worden. Der äußere Rand ist orange und gelb, innen ist der Nebel lila-violett.

Bildcredit: NASA, ESA und das Hubble-Nachlassteam (STScI/AURA); Danksagung: R. Sahai (JPL) et al.

Was bewirkt die seltsame Struktur von IC 418? Der planetarische Nebel IC 418 wird wegen seiner Ähnlichkeit mit Zeichnungen aus einem zyklischen Zeichengerät auch als Spirographen-Nebel bezeichnet. Er zeigt Muster, die nicht gut verstanden werden. Vielleicht haben sie irgendwas mit den chaotischen Winden zu tun, die von dem veränderlichen Stern ausgehen. Dieser kann seine Helligkeit innerhalb weniger Stunden auf unvorhersehbare Weise ändern.

Andererseits gibt es wissenschaftliche Hinweise, dass IC 418 vor wenigen Jahrmillionen wahrscheinlich ein ähnlich gut verstandener Stern wie die Sonne war. Noch vor wenigen Tausend Jahren war IC 418 ein gewöhnlicher Roter Riesenstern. Seitdem ihm das nukleare Feuer ausging, begann die äußere Hülle allerdings, sich weiter nach außen zu bewegen. So blieb ein heißer Überrest-Kern übrig. Sein Schicksal es ist, zu dem weißen Zwergstern zu werden, den man im Zentrum sieht. Das Licht aus dem inneren Kern regt umliegende Atome im Nebel an und bringt ihn zum Leuchten. IC 418 ist etwa 2000 Lichtjahre entfernt und durchmisst 0,3 Lichtjahre.

Dieses Falschfarbenbild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es enthüllt die ungewöhnlichen Details.

Zur Originalseite

Der Orionnebel im sichtbaren und infraroten Licht

Der Orionnebel ist hier in sichtbarem und infrarotem Licht dargestellt. Die vielen Staubfäden, die auf Bildern in sichtbarem Licht dunkel wirken, leuchten hier hell.

Bildcredit und Bildrechte: Infrarot: NASA, Weltraumteleskop Spitzer; Sichtbares Licht: Oliver Czernetz, Siding Spring Obs.

Der Große Orion Nebel ist ein bunter Ort. Mit dem bloßen Auge sieht man einen ausgefransten Fleck im Sternbild Orion. Mit einer langen Belichtungszeit zeigen Bilder in mehreren Wellenlängen wie dieses den Orionnebel als eine Nachbarschaft aus jungen Sternen, heißen Gasen und dunklem Staub. Dieses digitale Komposit besteht nicht nur aus drei Farben des sichtbaren Lichts, sondern auch aus vier Farben infraroter Strahlung, die vom Weltraumteleskop Spitzer der NASA aufgenommen wurden. Spitzer befindet sich im Erdorbit.

Die Energie, die den Orionnebel (M42) weitestgehend antreibt, stammt vom Trapez. Es sind vier der hellsten Sterne im Nebel. Viele der sichtbaren Filamente sind Stoßwellen – Fronten, an denen schnelle Materie auf langsames Gas trifft. Der Orionnebel durchmisst etwa 40 Lichtjahre und befindet sich etwa 1500 Lichtjahre von der Sonne entfernt im selben Spiralarm unserer Galaxis.

Zur Originalseite

Ein ungewöhnliches Loch im Mars

Das Bild wirkt wie der Boden einer Badewanne, die von einem fleckigen, glatten Material überzogen ist. Links oben ist ein Loch, das in eine Höhle führt. Auch darin ist etwas von dem seltsamen Überzug zu sehen.

Bildcredit: NASA, MRO, HiRISE, JPL, U. Arizona

Wie ist dieses ungewöhnliche Loch im Mars entstanden? Tatsächlich gibt es in dieser Landschaft sehr viele Löcher; sie sieht aus wie ein Schweizer Käse. Alle bis auf eines sind staubig und dunkel. Der Marsboden darunter dünstet aus und es entsteht helles Kohlendioxideis. Das ungewöhnlichste Loch sieht man hier rechts oben. Es ist etwa 100 Meter breit und scheint zu einem tieferen Niveau durchzustoßen.

Warum das Loch existiert und warum es von runden Trichter umgeben ist, bleibt Gegenstand von Spekulationen. Eine führende Hypothese ist, dass es durch einen Meteoriteneinschlag entstand. Löcher wie dieses sind deshalb besonders interessant, weil sie Portale zu tieferen Ebenen sein könnten. Dort befinden sich vielleicht im Untergrund Strukturen wie Höhlen.

Falls das so ist, wären diese natürlichen Tunnel ziemlich gut von der rauen Marsoberfläche geschützt. Sie wären daher relativ gute Kandidaten, um Leben auf dem Mars zu beinhalten. Daher sind diese Gruben ein Hauptziel für mögliche zukünftige Raummissionen mit Robotern und sogar menschlichen interplanetaren Erkundern.

Zur Originalseite

Mondbeben sind überraschend häufig

Der Apollo 11-Astronauten Buzz Aldrin steht neben dem gerade aufgestellten Mondseismometer. Er schaut zur Landefähre, dem Lunar Landing Module.

Bildcredit: NASA, Besatzung Apollo 11

Warum gibt’s so viele Mondbeben? Datenanalysen des Seismometers, das Apollo Missionen auf dem Mond gelassen haben, zeigen eine überraschende Häufigkeit von Mondbeben. Sie treten meist innerhalb von 100 Kilometern unter der Oberfläche auf.

Tatsächlich wurden in den Jahren zwischen 1972 und 1977 ganze 62 Mondbeben detektiert. Viele dieser Mondbeben sind nicht nur stark genug, um Möbel zu bewegen, wenn jemand eine Wohnung auf dem Mond hätte. Sogar steife Felsen auf dem Mond vibrieren minutenlang – das ist deutlich länger als die weicheren Felsen bei Erdbeben unseres Planeten Erde.

Die Ursache für die Mondbeben ist bis heute unklar. Die führende Hypothese ist Gezeitenwirkung und relative Aufheizung durch die Erde. Egal, was die Quelle der Beben ist, zukünftige Mondgebäude müssen jedenfalls so gebaut werden, dass sie dem häufigen Wackeln widerstehen.

Dieses Bild zeigt den Apollo 11-Astronauten Buzz Aldrin neben dem gerade aufgestellten Mondseismometer. Er schaut zur Landefähre, dem Lunar Landing Module.

Erforsche das Universum: APOD-Zufallsgenerator

Zur Originalseite

Venus und die dreifach ultraviolette Sonne

Die Sonne wirkt auf dieser Aufnahme ungewöhnlich bunt. Drei Wellenlängen des Infrarotlichts wurden kombiniert. Außen verläuft eine gefaserte Sonnenkorona in Gelb, auf der Oberfläche sind schleifenförmige Magnetfelder und ein dunkelblauer Bereich erkennbar. Links oben ist ein schwarzer Fleck, es ist die Venus, die vor der Sonne vorbeizieht.

Bildcredit: NASA/SDO und die Teams von AIA, EVE und HMI; Digitaler Aufbau: Peter L. Dove

Dies war eine sehr ungewöhnliche Sonnenfinsternis. Normalerweise ist es der Erdmond, der die Sonne bedeckt und damit verdunkelt. Doch im Jahr 2012 hat der Planet Venus sich zwischen Erde und Sonne geschoben. Wie bei einer Sonnenfinsternis durch den Mond wurde die Phase der Venus zuerst immer schmaler, die Venussichel wurde immer dünner, als sich die Venus der Sonne näherte.

Schließlich kam es zur perfekten Ausrichtung. Sonne, Venus und Erde lagen auf einer Linie. Dabei war die Phase der Venus null. Wir sahen nur die unbeleuchtete Seite der Venus. Der dunkle runde Fleck namens Venus überquerte unseren Heimatstern. Technisch gesehen kann man das als ringförmige Sonnenfinsternis durch die Venus beschreiben. Dieser Feuerring war außergewöhnlich breit.

Während der Bedeckung wurde dieses Bild der Sonne aufgenommen. Es zeigt drei „Farben“ (Wellenlängen) des ultravioletten Lichts, aufgenommen vom Satellitenteleskop Solar Dynamics Observatory. Die dunkle Region rechts zeigt ein koronales Loch. Einige Stunden später, als Venus sich auf ihrem Orbit weiter bewegt hatte, erschien sie wieder als sehr schlanke Sichel auf der anderen Seite der Sonne.

Die nächsten Durchgänge der Venus vor der Sonne gibt es erst ab dem Jahr 2117.

Zur Originalseite

Wirbelstürme an Jupiters Nordpol

Jupiters Nordpol ist in Infrarotlicht abgebildet. Um einen dunklen Bereich sind mehrere dunkle Wirbel angeordnet.

Bildcredit und Bildrechte: NASA, JPL-Caltech, SwRI, ASI, INAF, JIRAM

Warum gibts so viele Zyklon-Wirbelstürme an Jupiters Nordpol?

Diese Frage kann derzeit noch niemand beantworten. Die robotische Raumsonde Juno der NASA hat 2018 beim Umfliegen von Jupiter die Daten aufgenommen, aus denen diese atemberaubende Ansicht der kuriosen Zyklone am Nordpol des Riesenplaneten konstruiert wurde.

Wenn man die thermische Strahlung aus den jovianischen Wolkenoberflächen misst, kommt mehr Infrarot aus ihnen heraus als aus der ganzen von der Sonne beleuchteten Halbkugel. Es zeigen sich acht Wolkenwirbel, die einen riesigen Zyklon mit einem Durchmesser von 4000 Kilometers umgeben – und zwar gleich neben dem geographischen Nordpol des Riesenplaneten.

Ähnliche Daten zeigen auch am jovialen Südpol eine solche Zyklonstruktur mit fünf zirkumpolaren Wirbeln. Die Südpolzyklone sind ein bisschen größer als ihre nördlichen Cousins. Hingegen zeigten die Daten von der Raumsonde Cassini, die einst Saturn umkreiste, dass der Nord- und Südpol von Saturn jeweils nur einen großen Wirbelsturm aufweisen.

Zur Originalseite

Hubbles Ultra Deep Field in Licht und Ton

Das Hubble Ultra Deep Field ist ein Teil des Himmels, der sehr klein ist und sehr lange belichtet wurde, inzwischen auch mit dem Webb-Weltraumteleskop. Hier wurde das HUDF mit Tönen hinterlegt.

Bildcredit: NASA, ESA, Hubble; Vertonung: G. Salvesen; Data: M. Rafelski et al.

Bestimmt haben Sie schon vom Hubble Ultra-Deep Field gehört. Es ist eine ultra-tiefe Aufnahme eines Himmelsfelds. Was Sie aber gewiss noch nicht kennen, ist dieser Effekt: Fahren Sie mit dem Cursor über dieses Bild und spitzen Sie die Ohren!

Das Hubble Ultra-Deep Field (HUDF) wurde 2003-2004 hergestellt, indem das Weltraumteleskop Hubble sehr lange auf das nahezu leere Himmelsfeld starrte. So wurden weit entfernte, schwache Galaxien sichtbar.

Das HUDF ist eins der berühmtesten Bilder der Astronomie. Es wird hier in einer besonders vibrierenden Weise gezeigt, nämlich mit hörbar gemachten Entfernungen.

Wenn man den Cursor auf eine Galaxie schiebt, wird ein Ton gespielt, der mit der Rotverschiebung skaliert. Weil die Rotverschiebung das Licht zum roten Ende des sichtbaren Spektrums des Lichts verschiebt, wird sie hier genutzt, um Töne am niedrigen Ende des Klangspektrums zu erzeugen. Je weiter eine Galaxie von uns entfernt ist, desto größer ist ihre kosmologische Rotverschiebung (auch wenn sie im Bild blau erscheint) und desto tiefer ist der Ton, den das Bild spielt.

Im Schnitt sind die Galaxien im HUDF zirka 10,6 Milliarden Lichtjahre entfernt und klingen wie ein F#. Finden Sie die am weitesten entfernte Galaxie im Bild!

Hinweis: Für die vertonte Version bitte aufs Bild oder hier klicken

Zur Originalseite

Perijove 11: An Jupiter vorbei

Videocredit und Lizenz: NASA, Juno, SwRI, MSSS, Gerald Eichstadt; Musik: Moonlight Sonata (Ludwig van Beethoven)

Hier kommt Jupiter. Die robotische NASA-Raumsonde Juno umrundet auf ihrer stark elliptischen Bahn den größten Planeten im Sonnensystem. Dieses Video vom elften engen Vorbeiflug an Jupiter (Perijovum 11) wurde 2018 aufgenommen. Nach der Ankunft von Juno Mitte 2016 war dies der elfte Orbit.

Diese farbverstärkte Zeitrafferaufnahme zeigt ca. vier Stunden in 36 Bildern der JunoCam.

Das Video beginnt mit einem Jupiteraufgang. Dabei nähert sich Juno von Norden. Bei der größten Annäherung – etwa 3500 Kilometer über Jupiters Wolken – gelangen der Raumsonde außerordentlich detailreiche Aufnahmen des Riesenplaneten.

Juno passierte helle Zonen und dunkle Wolkenbänder, die den Planeten umspannen. Darüber hinaus sieht man zahlreiche runde Wirbelstürme, von denen viele größer als Wirbelstürme auf der Erde sind. Nach dem Perijovum entfernt sich Jupiter wieder und zeigt die ungewöhnlichen Wolken über seinem Süden.

Um die gewünschten wissenschaftlichen Daten zu erhalten, musste Juno dermaßen nahe an Jupiter vorbei rauschen, dass ihre Instrumente einer sehr hohen Menge von Strahlung ausgesetzt waren.

Zur Originalseite