Der höhenverstärkte Mond

Die Mondkugel ist mit stark überhöhtem Höhenprofil dargestellt, die Farben sind ebenfalls verstärkt und zeigen die Zusammensetzung der Regionen. © Ildar Ibatullin

Bildcredit: Daten: NASA, Lunar Orbiter Laser Altimeter; Bild und Bearbeitung: Ildar Ibatulin

Unser Mond hat nicht wirklich so große Krater. Der Erdmond weist von Natur aus nicht diese stachelige Struktur auf, und seine Farben sind subtiler. Aber diese digitale Kreation basiert auf der Realität.

Das hier gezeigte Bild ist ein digitales Komposit aus einem guten Mondbild und Daten zur Oberflächenhöhe, die von der NASA-Mission LOLA (Lunar Orbiter Laser Altimeter) stammen – und dann zum besseren Verständnis überhöht wurden.

Die digitalen Verbesserungen heben zum Beispiel Hochebenen hervor und zeigen Krater deutlicher, die den enormen Beschuss unseres Mondes während seiner 4,6 Milliarden Jahre dauernden Geschichte veranschaulichen. Die dunklen Gebiete, Maria genannt, haben weniger Krater und waren einst Meere aus geschmolzener Lava.

Außerdem sind die Farben des Bildes verändert und übertrieben, obwohl sie auf der tatsächlichen Zusammensetzung des Mondes basieren. Ein blauer Farbton deutet auf eine eisenreiche Region hin, während orange auf einen leichten Überschuss an Aluminium hinweist.

Obwohl der Erdmond schon seit Milliarden von Jahren dieselbe Seite zeigt, ermöglicht der Menschheit erst moderne Technologie, viel mehr über ihn zu erfahren – und darüber, wie er die Erde beeinflusst.

Zur Originalseite

Krebsnebel: sichtbares Licht bis Röntgenbereich

Der Krebsnebel ist in unvertrauten violett-blauenFarbtönen dargestellt. In der Mitte ist in lila die Röntgenstrahlung überlagert, die vom Krebs-Pulsar abgestrahlt wird.

Bildcredit: NASA, ESA, ASI, Hubble, Chandra, IXPE

Was treibt den Krebsnebel an? Ein stadtgroßer magnetisierter Neutronenstern, der sich ungefähr 30 Mal pro Sekunde dreht. Dieser als Krebsnebel-Pulsar bekannte Stern ist der helle Fleck in der Mitte des Gaswirbels im Kern des Nebels.

Das spektakuläre Bild des Krebsnebels (M1) mit einem Durchmesser von rund 10 Lichtjahren zeigt eine wirbelnde zentrale Scheibe und komplexe Filamente aus umgebendem und sich ausdehnendem glühendem Gas. Das Bild kombiniert das sichtbare Licht vom Hubble-Weltraumteleskop in Rot und Blau mit dem Röntgenlicht vom Chandra-Röntgenobservatorium in Weiß und der diffusen Röntgenemission, die vom Imaging X-ray Polarimetry Explorer (IXPE) entdeckt wurde, in diffusem Lila.

Der zentrale Pulsar treibt die Emissionen und die Ausdehnung des Krebsnebels an, indem er seine Rotationsgeschwindigkeit leicht verlangsamt, was einen Sternenwind aus energiereichen Elektronen auslöst. Das Bild wurde heute, am 25. Jahrestag des Starts von Chandra, dem NASA-Flaggschiff unter den Röntgenobservatorien, veröffentlicht.

Viele Entdeckungen: Chandra feiert 25-jähriges Jubiläum

Zur Originalseite

Der Vulkan Villarrica vor dem Himmel

Videocredit und -rechte: Gabriel Muñoz; Text: Natalia Lewandowska (SUNY Oswego)

Wenn Vulkan, der römische Gott des Feuers, seinen Schmiedehammer schwingt, beginnt der Himmel zu brennen. Ein kürzlich erfolgter Ausbruch des chilenischen Vulkans Villarrica zeigt das delikate Zusammenspiel zwischen diesem Feuer – in Wirklichkeit glühender Dampf und Asche aus geschmolzenem Gestein – und dem Licht von fernen Sternen in unserer Milchstraße und den Magellanschen Wolken.

In dem hier gezeigten Zeitraffervideo dreht sich die Erde unter dem Sternenhimmel, während der Villarrica ausbricht. Mit etwa 1.350 Vulkanen ist unser Planet Erde neben dem Jupitermond Io der geologisch aktivste Ort im Sonnensystem. Beide sind zwar wunderschön, aber die Gründe für die Existenz von Vulkanen auf beiden Welten sind unterschiedlich.

Die Vulkane auf der Erde entstehen in der Regel zwischen den sich langsam verschiebenden äußeren Platten, während die Vulkane auf Io durch die Schwerkraftverformung infolge der Gezeiten des Jupiters verursacht werden.

Zur Originalseite

Kometare Globulen

Dunkle Gestalten wirken wie Gespenster, sie haben rote leuchtende Ränder, dahinter sind Sterne.

Bildcredit und Bildrechte: Mark Hanson und Martin Pugh, Observatorio El Sauce

Was sind diese ungewöhnlichen interstellaren Strukturen? Hell umrandete, fließende Formen versammeln sich in der Nähe des Zentrums dieses reichhaltigen Sternenfeldes an den Rändern der südlichen Sternbilder Achterdeck (Puppis) und Segel (Vela).

Die aus interstellarem Gas und Staub bestehende Gruppierung von kometare Globulen ist rund 1.300 Lichtjahre entfernt. Energiereiches ultraviolettes Licht von nahen heißen Sternen hat die Globulen geformt und ihre hellen Ränder ionisiert.

Die Globulen strömen auch vom Vela-Supernova-Überrest weg, was ihre geschwungene Form beeinflusst haben könnte. In ihrem Innern kollabieren wahrscheinlich Kerne aus kaltem Gas und Staub, um massearme Sterne zu bilden, deren Bildung schließlich zur Auflösung der Globulen führen wird.

Die kometare Globule CG 30 (oben links) weist in der Nähe ihres Kopfes ein kleines rötliches Leuchten auf, ein verräterisches Zeichen für energiereiche Strahlen eines Sterns in den frühen Stadien der Entstehung.

Zur Originalseite

Dreiergespann im Schützen

Drei Nebel sind zwischen dichten Sternfeldern und Dunkelnebeln verteilt: Links oben der Lagunennebel, links unten der Trifidnebel und rechts NGC 6559.

Bildcredit und Bildrechte: Andy Ermolli

Diese drei hellen Nebel werden oft auf Teleskopreisen durch das Sternbild Schütze (Sagittarius) und die dicht besiedelten Sternenfelder der zentralen Milchstraße besucht.

Der französische Astronom Charles Messier, ein kosmischer Tourist des 18. Jahrhunderts, katalogisierte zwei von ihnen: M8, den großen Nebel oben in der Mitte und den farbenfrohen M20 unten und links im Bild. Die dritte Emissionsregion ist NGC 6559, rechts von M8 und vom größeren Nebel durch eine dunkle Staubspur getrennt.

Alle drei sind stellare Kinderstuben in etwa fünftausend Lichtjahren Entfernung. Der sich über hundert Lichtjahre erstreckende M8 ist auch als Lagunennebel bekannt. M20 wird im Volksmund auch als Trifidnebel bezeichnet.

Glühendes Wasserstoffgas sorgt für die dominierende rote Farbe der Emissionsnebel. Die blauen Farbtöne im Trifidnebel werden jedoch durch das von Staub reflektierte Sternenlicht hervorgerufen und bilden einen auffälligen Kontrast. Die breite interstellare Himmelslandschaft erstreckt sich über fast 4 Grad oder 8 Vollmonde am Himmel.

Zur Originalseite

Leuchtende Nachtwolken über Florida

Der Himmel in der Morgendämmerung ist oben schwarz und in der Nähe des Horizonts braun. Rechts ziehen dünne Wolken zusammen, die von einem weißen zu einem blauen Farbton wechseln. Unweit vom Scheitelpunkt der Konvergenz ist die Mondsichel.

Bildcredit und Bildrechte: Pascal Fouquet

Diese Wolken sind aus zwei Gründen ungewöhnlich. Zum einen sind sie seltene leuchtende Nachtwolken, d. h. sie sind in der Nacht sichtbar – aber nur kurz vor Sonnenaufgang oder kurz nach Sonnenuntergang.

Zum anderen kennt man die Quelle diese leuchtenden Nachtwolken. In diesem seltenen Fall können die sonnenlichtreflektierenden Eiskristalle in der oberen Atmosphäre auf eine SpaceX-Rakete, die 30 Minuten vorher gestartet ist, zurückgeführt werden.

Formal nennt man sie Polare Mesosphärenwolken. Der Angelpunkt dieser Eissträhnen sieht aus, als ob er sich genau vor dem aufgehenden Sichelmond befinden würde.

Das Bild – und das dazugehörige Video – wurde vor ungefähr einer Woche in Orlando, Florida, USA aufgenommen. Der helle Fleck rechts vom Mond ist der Planet Jupiter, während die Lichterkette rechts über dem Horizont sind Lichter eines Flugzeugs.

Zur Originalseite

NGC 602: Auster-Sternhaufen

Um einen Sternhaufen ist eine Gaswolke ausgebreitet, die wie eine Auster aussieht. Das Rollover-Bild zeigt denselben Haufen nicht nur im sichtbaren Licht, sondern auch im Röntgen- und Infrarotbereich.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Sichtbares Licht: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Wolken sehen wie eine Muschel aus und die Sterne wie Perlen – aber es gibt noch viel mehr zu entdecken! Gegen den Rand der Kleinen Magellanschen Wolke, einer Satellitengalaxie, die rund 200 Tausend Lichtjahre entfernt ist, liegt der 5 Millionen Jahre alte Sternhaufen NGC 602.

In diesem beeindruckenden Hubble-Bild, das mit Röntgenbildern des Chandra Observatory und Infrarotbildern des Spitzer-Teleskops ergänzt wurde, sieht man NGC 602 umgeben von seiner Geburtshülle aus Gas und Staub.

Fantastische Rillen und zurückgeschleudertes Gas deuten darauf hin, dass energiereiche Strahlung und Schockwellen der massereichen jungen Sterne in NGC 602 das staubige Material abgetragen und den Prozess der Sternentstehung ausgelöst haben, der sich vom Zentrum des Sternhaufens entfernt.

Bei der geschätzten Entfernung der Kleinen Magellanschen Wolke erstreckt sich das Bild über etwa 200 Lichtjahre, aber eine beeindruckende Auswahl an Hintergrundgalaxien ist in dieser gestochen scharfen Ansicht ebenfalls zu sehen. Die Hintergrundgalaxien befinden sich Hunderte von Millionen Lichtjahren – oder mehr – hinter NGC 602.

Zur Originalseite

Zeitraffer: Polarlicht, SAR und die Milchstraße

Videocredit und -rechte: Jeff Dai (TWAN); Musik: (Lizenz): Suite bergamasque von Claude Debussy

Was passiert in dieser ungewöhnlichen Nacht am Himmel? Am prominentesten in diesem 4,5 Stunden 360-Grad Panoramavideo sind vermutlich die pinken und violetten Polarlichter.

In der Nacht vom 11. auf den 12. Mai waren be­kann­ter­ma­ßen weltweit Polarlichter am Himmel zu sehen. Mit dem Voranschreiten der Nacht schimmern die Polarlichtbänder und das Zentralband der Milchstraße geht auf, während sich die Sterne um die unter ihnen rotierenden Erde bewegen.

Auf diesem Bild befindet sich ein seltenes rotes Band, das direkt über dem Polarlicht liegt: ein SAR-Bogen, der sich nur kaum verändert. Das Aufblitzen am Horizont wird durch vorbeifahrende Autos verursacht, während die sich bewegenden Lichtpunkte am Himmel Satelliten und Flugzeuge sind.

Das Bild wurde in Xinjiang, China mit vier separaten Kameras aufgenommen.

Zur Originalseite