Drachenauge am Himmel

Die Szene erinnert an das Auge eines Drachen. Es ist die russische Insel Askold. Auf einem Hügel steht ein verlassener Außenposten. Vorne steht der Fotograf auf sehr steil wirkenden Stufen. In der Mitte sind Meer und Himmel zu einem Kreis gekrümmt.

Bildcredit und Bildrechte: Anton Komlev

Was seht ihr, wenn ihr diesen Himmel betrachtet? Seht in der Mitte, da, wo es dunkel ist, einen Nachthimmel voller Sterne? Seht ihr links einen Sonnenuntergang? Und außen herum Wolken? Seht ihr das zentrale Band unserer Milchstraße, das in der Mitte abwärts läuft?

Seht ihr die Ruinen eines verlassenen Außenpostens auf einem Hügel? (Der Außenposten steht auf der russischen Insel Askold.) Seht ihr einen Fotografen mit Stirnlampe, der über die surreale Umgebung sinniert? (Das Panorama entstand aus 38 Bildern. Sie wurden zu einer Kleiner-Planet-Projektion kombiniert.) Seht ihr einen steilen Weg mit vielen Stufen?

Oder blickt ihr in das Auge eines Drachen?

Zur Originalseite

Die Schirmgalaxie NGC 4651

Über der Spiralgalaxie NGC 4651 im Sternbild Haar der Berenike ragt im Bild ein Schirm aus Sternen auf. Er entstand, indem eine kleine Galaxie durch Gezeitenkräfte zerrissen wurde. Außen herum sind einzelne Sterne verteilt, sie befinden sich in der Milchstraße in unserer Nähe.

Bildcredit: Rabeea Alkuwari und Anas Almajed

Es regnet es Sterne in NGC 4651. Was wie ein riesiger kosmischer Schirm aussieht, ist ein Gezeitenstrom aus Sternen. Diese wurden aus einer kleinen Begleitgalaxie gerissen. Die Hauptgalaxie ist NGC 4651. Diese Spiralgalaxie ist annähernd so groß wie unsere Milchstraße. Ihr Sternenschirm reicht bis zu 100.000 Lichtjahre über die helle Scheibe der Galaxie hinauf.*

Wahrscheinlich kam eine kleine Galaxie auf einer exzentrischen Bahn durch NGC 4651 dem Zentrum immer wieder sehr nahe. Bei diesen wiederholten Begegnungen zerfiel sie schließlich. Die herausgerissenen Sterne fallen in den nächsten paar Millionen Jahren zurück in die große Galaxie.

Dieses detailreiche Bild entstand aus lang belichteten Aufnahmen. Sie wurden in Saudi Arabien fotografiert. Die Schirmgalaxie ist etwa 50 Millionen Lichtjahre entfernt.* Sie liegt im gut gekämmten nördlichen Sternbild Haar der Berenike (Coma Berenices).
*Anm. d. Übers.: Die genaue Größe der einzelnen Strukturen ist nicht bekannt, weil die Entfernung bisher nicht genau gemessen werden konnte.

APOD in neuem Look: StellarSnap

Zur Originalseite

APOD ist heute 30 Jahre alt

Auf den ersten Blick erkennt man das Bild "Sternennacht" von Vincent van Gogh. Wenn man genau hinsieht, erkennt man ein Mosaik aus 32.232 Kacheln, welche 1826 Bilder der letzten 5 Jahre zeigen.

Bildcredit: Verpixelung von Van Goghs „Sternennacht“ von Dario Giannobile

APOD (deutsch: Weltraumbild des Tages) ist heute 30 Jahre alt. Zur Feier des Tages zeigt das heutige Bild frühere Weltraumbilder von APOD als Pixel. Sie wurden zu einem gemeinsamen Bild angeordnet. Vielleicht erinnert es euch an eine der bekanntesten und stimmungsvollsten Abbildungen, die den Nachthimmel auf dem Planeten Erde zeigen. Diese sternklare Nacht besteht aus ganzen 1826 Einzelbildern. Sie wurden in den letzten 5 Jahren bei APOD veröffentlicht und zu einem Mosaik aus 32.232 Steinchen kombiniert.

Heute dankt APOD herzlich allen Mitwirkenden, Freiwilligen, Leserinnen und Lesern. Der unermüdliche Einsatz in den letzten 30 Jahren führt dazu, dass wir die Entdeckung des Kosmos genießen, uns davon inspirieren lassen und daran teilhaben können.

Ergänzung der Übersetzerin: Besonderer Dank an Robert Nemiroff und Jerry T. Bonnell.

Zur Originalseite

Die irreguläre Zwerggalaxie Sextans A

Mitten in einem Sternfeld, in dem lose Sterne verteilt sind, schimmert ein Sternenbündel, das voller blauer Sternhaufen und rosaroter Sternbildungsregionen ist. Es ist die irreguläre Zwerggalaxie Sextans A.

Bildcredit und Bildrechte: Franz Hofmann, Gemsbock-Observatory

Prächtige Spiralgalaxien heimsen oft den ganzen Ruhm ein. Sie zeigen junge, helle, blaue Sternhaufen und rötliche Bereiche mit Sternbildung, die ihre eleganten, symmetrischen Spiralarme säumen. Doch auch in kleinen Galaxien entstehen Sterne. Ein Beispiel ist die irreguläre Zwerggalaxie Sextans A. Ihre jungen Sternhaufen und Gebiete mit Sternbildung sind in einem Raum versammelt, der nur 5000 Lichtjahre breit ist.

Die Zwerggalaxie hat eine Form wie ein Zuckerl. Sie liegt im nautischen Sternbild Sextant (Sextans). Die kleine Galaxie ist ungefähr 4,5 Millionen Lichtjahre entfernt. Damit liegt sie im Randbereich der Lokalen Gruppe. Auch die große, massereiche Andromeda-Spiralgalaxie und unsere Milchstraße gehören zur Lokalen Gruppe. Die hellen Sterne auf diesem bunten Teleskopbild von Sextans A liegen im Vordergrund in der Milchstraße. Sie wirken gezackt und gelblich.

Zur Originalseite

Herbig-Haro 24

In der Mitte der teils dunklen, teils orange-braunen Nebelwolken leuchtet ein helles Objekt. Links daneben strömen zwei Strahlen hinter einer dunklen Wolke hervor, einer nach oben, der andere nach unten.

Bildcredit: NASA, ESA, Hubble-Archiv (STScI / AURA) / Hubble-Europa-Kooperation; Danksagung: D. Padgett (GSFC), T. Megeath (Univ. Toledo), B. Reipurth (Univ. Hawaii)

HH 24 erinnert an ein Lichtschwert mit Doppelklinge. Doch es sind zwei kosmische Strahlen, die aus einem neu entstandenen Stern strömen. Er befindet sich in der Galaxis in unserer Nähe. Die faszinierende Szene entstand aus Bilddaten des Weltraumteleskops Hubble. Sie zeigt etwa ein halbes Lichtjahr von Herbig-Haro 24 (HH 24). Das Objekt ist an die 1300 Lichtjahre bzw. 400 Parsec entfernt.

HH 24 liegt in der Sternschmiede im Molekülwolkenkomplex Orion B. Das Objekt ist vor direkter Sicht verborgen. Der Protostern im Zentrum von HH 24 ist von kaltem Staub und Gas umgeben, das zu einer rotierenden Akkretionsscheibe abflachte. Wenn Materie aus der Scheibe zum jungen stellaren Objekt fällt, wird sie aufgeheizt.

Strahlströme werden in der Rotationsachse des Systems ausgeschleudert. Sie zeigen in entgegengesetzte Richtungen und schneiden durch die interstellare Materie in der Region. Die engen, energiereichen Strahlen erzeugen in ihren Strömungskanälen Serien aus leuchtenden Stoßfronten.

Zur Originalseite

Gaia erstellt eine Aufsicht unserer Milchstraße

Eine Spiragalaxie - unsere Milchstraße ist von oben zu sehen. Sie ist von einem dunklen Feld umgeben.

Illustrationscredit: ESA, Gaia, DPAC, Stefan Payne-Wardenaar

Wie sieht unsere Milchstraße von oben aus? Weil wir uns darin befinden, kann die Menschheit kein echtes Bild davon bekommen. Doch kürzlich wurde eine Karte erstellt. Dazu verwendete man die Positionsdaten von mehr als einer Milliarde Sterne, die von der ESA-Mission Gaia erfasst wurden. So entstand die hier gezeigte Illustration. Sie zeigt, dass unsere Milchstraße – wie viele andere Spiralgalaxien – ausgeprägte Spiralarme hat.

Unsere Sonne und die meisten der hellen Sterne, die wir nachts sehen, sind in nur einem Arm: dem von Orion. Die Gaia-Daten bestätigen frühere Hinweise, dass unsere Milchstraße mehr als zwei Spiralarme hat. Im Zentrum der Galaxis gibt es einen markanten Balken. Die Farben der dünnen Scheibe unserer Galaxis stammen großteils von dunklem Staub, hellen blauen Sternen und roten Emissionsnebeln. Die Datenanalyse läuft noch. Dennoch wurde Gaia im März nach einer Folgemission abgeschaltet.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Aufwirbeln eines sehr massereichen Schwarzen Lochs

Eine Akkretionsscheibe um ein Schwarzes Loch wirbelt schräg im Bild. Nach links oben steigt ein wirbelnder blauer, transparenter Strahl auf. Mitten in der Akkretionsscheibe ist eine schwarze Kugel.

Illustrationscredit: Robert Hurt, NASA/JPL-Caltech

Wie schnell kann ein Schwarzes Loch rotieren? Wenn ein Objekt aus normaler Materie zu schnell rotiert, zerbricht es. Doch ein Schwarzes Loch kann vielleicht gar nicht brechen. Und seine maximale Rotationsgeschwindigkeit ist tatsächlich unbekannt. Für gewöhnlich werden schnell rotierende Schwarze Löcher mit der Kerr-Lösung zu Einsteins Allgemeiner Relativitätstheorie modelliert. Das führt zu mehreren erstaunlichen, ungewöhnlichen Vorhersagen.

Eine Prognose sollte man relativ einfach überprüfen können: Man beobachtet dazu aus großer Entfernung, wie Materie in ein Schwarzes Loch fällt, das mit maximaler Geschwindigkeit rotiert. Die Materie sollte man zuletzt sehen, wenn sie fast mit Lichtgeschwindigkeit um das Schwarze Loch kreist.

Diese Vorhersage wurde mit den Satelliten NuSTAR der NASA und XMM der ESA geprüft. Sie beobachteten das sehr massereiche Schwarze Loch im Zentrum der Spiralgalaxie NGC 1365. Die Grenze nahe der Lichtgeschwindigkeit wurde bestätigt. Dazu wurden die Aufheizung und die Spektrallinien-Verbreiterung von Kernemissionen am inneren Rand der Akkretionsscheibe gemessen.

Die künstlerische Illustration zeigt eine Akkretionsscheibe aus normaler Materie. Sie wirbelt um ein Schwarzes Loch. Oben strömt ein Strahl aus. Materie, die zufällig in ein Schwarzes Loch fällt, sollte dieses nicht so stark beschleunigen. Daher bestätigen die Messungen von NuSTAR und XMM auch die Existenz der umgebenden Akkretionsscheibe.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite

MESSENGERs letzter Tag auf Merkur

Wir blicken schräg auf einen rechteckigen Ausschnitt der Merkur-Oberfläche. Sie ist rot und blau farbcodiert und zeigt einige Krater. Rote Teile im Bild sind höher als blaue.

Bildcredit: NASA, Johns Hopkins Univ. APL, Staatliche Universität Arizona, CIW

MESSENGER war die erste Raumsonde, die um den innersten Planeten Merkur kreiste. Sie wurde am 30. April 2015 in der oben gezeigten Region auf Merkurs Oberfläche abgesetzt. Die Projektion entstand aus MESSENGER-Bildern und Laser-Höhenmessungen. Der Blick reicht nach Norden über den nordöstlichen Rand des breiten Shakespeare-Beckens, das mit Lava gefüllt ist.

In der linken oberen Ecke liegt der große, 48 km breite Krater Janacek. Die Höhe der Landschaft ist farbcodiert. Rote Bereiche liegen etwa 3 km über den blauen. MESSENGERs letzter Umlauf sollte etwa in der Mitte enden. Dabei sollte die Raumsonde mit fast 4 km/s auf der Oberfläche einschlagen und dabei einen neuen, etwa 16 m großen Krater erzeugen.

Der Einschlag fand auf Merkurs Rückseite statt und wurde nicht mit Teleskopen beobachtet. Er wurde aber indirekt bestätigt. Denn als die Raumsonde hinter dem Planeten auftauchen sollte, wurde kein Signal mehr gemessen. Die Raumsonde MErcury Surface, Space ENvironment, GEochemisty and Ranging startete 2004. Sie erreichte 2011 den innersten Planeten im Sonnensystem und machte mehr als 4000 Umläufe.

Zur Originalseite