NGC 7023: Der Irisnebel

Mitten in einer bräunlichen Wolke leuchtet ein blauer Nebel. Staub streut blaues Licht effizienter als rotes Licht.

Bildcredit und Bildrechte: Robert Shepherd

Diese kosmischen Wolken sind 1300 Lichtjahre entfernt. Sie blühten in den üppigen Feldern im Sternbild Kepheus. NGC 7023 wird Irisnebel genannt. Er ist nicht der einzige Nebel, der an Blumen erinnert.

Dieses detaillierte Teleskopbild zeigt die verschiedenen Farben und Symmetrien im Irisnebel. Sie sind in Felder aus interstellarem Staub eingebettet. Das staubige Nebelmaterial in der Iris umgibt einen heißen jungen Stern. Die Hauptfarbe des helleren Reflexionsnebels ist Blau. Diese Farbe ist typisch für Staubkörnchen, die Sternenlicht reflektieren.

Die Fasern im Zentrum des Reflexionsnebels leuchten mit einer schwachen rötlichen Photolumineszenz. Denn manche Staubkörnchen verwandeln die unsichtbare ultraviolette Strahlung des Sterns in sichtbares rotes Licht. Infrarot-Beobachtungen zeigen, dass der Nebel wahrscheinlich komplexe Kohlenstoffmoleküle enthält. Diese Moleküle werden als PAK bezeichnet.

Die staubigen blauen Blütenblätter im Irisnebel sind etwa sechs Lichtjahre lang.

Zur Originalseite

Chamäleon-Dunkelnebel

Das Bild zeigt einen dunklen Nebelkomplex mit dickem braunem Staub, der ein großes V bildet.

Bildcredit und Bildrechte: Chang Lee

Manchmal hat der dunkle Staub des interstellaren Raums eine kantige Eleganz, zum Beispiel im südlichen Sternbild Chamäleon. Dunkler Staub ist an sich zu blass, um ihn zu sehen. Er blockiert außerdem sichtbares Licht von Sternen und Galaxien dahinter.

Diese Aufnahme wurde 36,6 Stunden belichtet. Der Staub ist großteils im eigenen Licht zu sehen. Seine starken roten und nah-infraroten Farben erzeugen einen braunen Farbton. Der helle Stern Beta Chamaeleontis bildet rechts oben einen Kontrast dazu. Der Staub, der ihn umgibt, reflektiert bevorzugt den blauen Anteil seines blau-weißen Lichtes.

Alle abgebildeten Sterne und der Staub liegen in unserer Milchstraße. Eine bemerkenswerte Ausnahme ist der weiße Fleck unter Beta Chamaeleontis. Es ist die weit entfernte Galaxie IC 3104.

Interstellarer Staub entsteht großteils in den kühlen Atmosphären riesiger Sterne. Er wird durch Sternenlicht, Sternwinde und Sternexplosionen wie Supernovae im Weltraum verteilt.

Zur Originalseite

Messier 24: Sternwolke im Schützen

Das Bild ist dicht mit Sternen gefüllt, die links neben der Mitte noch dichter sind. Im Sternfeld sind zwei dunkle Markierungen. Oben in der Mitte ist ein magentafarbener Nebel, der nicht im Text beschrieben wird.

Bildcredit und Bildrechte: Christopher Freeburn

Anders als die meisten Einträge in Charles Messiers berühmtem Katalog nebeliger Himmelsobjekte ist M24 keine helle Galaxie, kein Sternhaufen oder Nebel. Es ist eine Lücke in den nahen, undurchsichtigen interstellaren Staubwolken. Diese Lücke bietet einen Blick auf die fernen Sterne im Sagittarius-Spiralarm unserer Milchstraße.

Wenn ihr mit Fernglas oder einem kleinen Teleskop durch diese Lücke blickt, seht ihr durch ein mehr als 300 Lichtjahre breites Fenster auf Sterne, die mehr als 10.000 Lichtjahre von der Erde entfernt sind.

M24 wird manchmal „Kleine Sagittarius-Sternwolke“ genannt. Ihre leuchtstarken Sterne liegen links neben der Mitte dieser prachtvollen Sternenlandschaft. Das Teleskopfeld deckt mehr als 6 Grad im Sternbild Schütze ab, das ist die 12-fache Breite des Vollmondes. Es zeigt die dunklen Markierungen B92 und B93 bei der Mitte von M24, zusammen mit anderen Wolken aus Staub und leuchtenden Nebeln im Zentrum der Milchstraße.

Zur Originalseite

Hubble zeigt die Kaulquappengalaxie

Rechts oben ist eine Spiralgalaxie, die von schleifenförmigen Spiralarmen umwickelt ist. Nach links unten zieht sich ein langer Gezeitenschweif aus blauen Sternhaufen.

Bildcredit: Hubble-Vermächtnisarchiv, ESA, NASA; Bearbeitung: Harshwardhan Pathak

Warum hat diese Galaxie einen so langen Schweif? Diese Ansicht entstand aus Bilddaten des Hubble-Vermächtnisarchivs. Weit entfernte Galaxien bilden eine grandiose Kulisse für die zerrissene Spiralgalaxie Arp 188. Sie wird auch Kaulquappengalaxie genannt.

Die kosmische Kaulquappe ist an die 420 Millionen Lichtjahre entfernt. Sie liegt im nördlichen Sternbild Drache (Draco). Ihr augenfälliger Schweif ist etwa 280.000 Lichtjahre lang und enthält massereiche helle, blaue Sternhaufen.

Es heißt, dass eine kompaktere Galaxie vor Arp 188 vorbeizog – in dieser Ansicht von rechts nach links – und durch die Gravitation hinter die Kaulquappe gewickelt wurde. Bei der engen Begegnung zogen die Gezeitenkräfte Sterne, Gas und Staub aus der Spiralgalaxie heraus, sodass der auffällige Schweif entstand.

Die eindringende Galaxie liegt etwa 300.000 Lichtjahre hinter der Kaulquappe. Sie lugt rechts oben durch die Spiralarme im Vordergrund. Wie ihr Namensvetter auf der Erde verliert die Kaulquappengalaxie wohl ihren Schweif, wenn sie älter wird. Die Sternhaufen im Sternschweif bilden dann kleinere Begleiterinnen der großen Spiralgalaxie.

APOD in Weltsprachen: arabisch (IG), bulgarisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, Farsi, französisch, hebräisch, japanisch, katalanisch, niederländisch, portuguiesisch, russisch, serbisch, slowenisch, spanisch, taiwanesisch, tschechisch, türkisch und ukrainisch

Zur Originalseite

Der Kugelsternhaufen Omega Centauri

Mitten im Bild ist der größte und hellste von 200 Kugelsternhaufen, die wir kennen. Es ist Omega Cen im Sternbild Zentaur. Er hat ein helles, diffuses Zentrum, das nach außen hin ausdünnt.

Bildcredit und Bildrechte: Juergen Stein

Im Kugelsternhaufen Omega Centauri sind etwa 10 Millionen Sterne in einen Raum gepfercht, der einem Durchmesser von 150 Lichtjahren hat. Die Sterne sind viel älter als die Sonne.

Der Kugelsternhaufen ist auch als NGC 5139 bekannt. Er ist 15.000 Lichtjahre entfernt. Von den etwa 200 bekannten Kugelsternhaufen, die im Hof unserer Milchstraße wandern, ist er der größte und hellste.

Die meisten Sternhaufen bestehen aus Sternen desselben Alters mit gleicher Zusammensetzung. Im rätselhaften Omega Cen gibt es unterschiedliche Sternpopulationen, deren Alter und chemische Zusammensetzung verschieden ist. Vielleicht ist Omega Cen sogar der übrig gebliebene Kern einer kleinen Galaxie, die mit der Milchstraße verschmolzen ist.

Die Roten Riesen in Omega Centauri sind auf dieser scharfen Teleskopansicht leicht an ihrem gelblichen Farbton erkennbar. Zwei Jahrzehnte lang wurde der dichte Sternhaufen mit dem Weltraumteleskop Hubble erforscht. Dabei zeigten sich Hinweise auf ein massereiches Schwarzes Loch beim Zentrum von Omega Centauri.

Zur Originalseite

Exoplaneten-Zoo: Andere Sterne

Wie Perlen sind verschieden große Exoplaneten verteilt. Links sind bräunliche Planeten, zur Mitte hin sind hellblau bis dunkelblaue Planeten, und rechts sind rote und orangefarbene Himmelskörper.

Illustrationscredit und Bildrechte: Martin Vargic, Halcyon Maps

Haben andere Sterne Planeten wie unsere Sonne? Sicherlich. Dafür gibt es viele Hinweise. Die Gravitation kreisender Exoplaneten erzeugt leichte Sternwackler. Andere Planeten wandern vor Sternen vorbei und trüben sie.

Bisher wurden insgesamt mehr als 5500 Exoplaneten entdeckt. Tausende davon fanden die Weltraummissionen Kepler und TESS der NASA. Mehr als 100 wurden mit dem erdgebundenen Instrument HARPS der ESO entdeckt.

Diese Illustration zeigt eine Vermutung, wie manche dieser Exoplaneten wohl aussehen. In der Mitte sind neptunartige Planeten verteilt. Ihre Atmosphären enthalten vielleicht Methan, das blaues Licht streut. Daher sind sie blau. An den Seiten des Bildes befinden sich jupiterähnliche Planeten. Sie sind hellbraun und rot, weil die Gase in ihren Atmosphären wahrscheinlich kleine Mengen Kohlenstoff enthalten. Dazwischen sind viele erdähnliche Gesteinsplaneten mit unterschiedlichen Farben verteilt.

Je mehr Exoplaneten entdeckt werden, desto besser versteht die Menschheit, wie häufig erdähnliche Planeten sind und wie häufig es Leben im Universum geben könnte.

Zur Originalseite

Webb zeigt protostellare Ausflüsse in Serpens

In einem dunkelbraunen Nebel leuchten hellgelbe Gebiete, die von rötlichem Licht umgeben sind. Man erkennt Akkretionsscheiben um junge Sterne und Materieströme, die senkrecht aus den Akkretionsscheiben schießen.

Bildcredit: NASA, ESA, CSA, STScI, Klaus Pontoppidan (NASA-JPL), Joel Green (STScI)

Diese Nahaufnahme des Serpensnebels entstand mit dem James-Webb-Weltraumteleskop. Materiestrahlen strömen aus neu entstandenen Sternen. Die mächtigen protostellaren Ausflüsse sind bipolar. Das bedeutet, dass Zwillingsstrahlen in entgegengesetzte Richtungen senkrecht aus den Akkretionsscheiben strömen, welche um die kollabierenden Jungsterne rotieren.

Das NIRcam-Bild zeigt Strahlung von molekularem Wasserstoff und Kohlenmonoxid in rötlichen Farbtönen. Die Strahlung entsteht, wenn die Ausflüsse auf Gas und Staub in der Umgebung treffen.

Das scharfe Bild zeigt erstmals, dass die einzelnen Ausflüsse im Serpensnebel allgemein in dieselbe Richtung zeigen. Dieses Ergebnis wurde erwartet. Es trat aber jetzt erst auf Webbs detailreicher Abbildung der aktiven jungen Sternbildungsregion klar zutage.

Die helleren Sterne im Vordergrund zeigen Webbs typische Beugungsspitzen. Die Entfernung des Serpensnebels wird auf 1300 Lichtjahre geschätzt. Die kosmische Nahaufnahme ist etwa ein Lichtjahr breit.

Zur Originalseite

JADES-GS-z14-0: Neues fernstes Objekt

Zwischen zahllosen Galaxien ist ein kleines Objekt mit einem weißen Quadrat markiert und rechts oben in einem Einschub vergrößert.

Bildcredit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA)

Was wäre, wenn wir bis zum Beginn des Universums zurückblicken könnten? Wir könnten sehen, wie Galaxien entstehen. Doch wie sahen Galaxien damals aus? Der Antwort auf diese Frage kamen wir kürzlich einen Schritt näher, als die Analyse eines Bildes veröffentlicht wurde, das mit dem James-Webb-Weltraumteleskops (JWST) aufgenommen wurde.

Die Aufnahme zeigt das fernste Objekt, das je entdeckt wurde. Die meisten Galaxien entstanden etwa 3 Milliarden Jahre nach dem Urknall, doch einige entwickelten sich früher. Der Kasten im Bild zeigt JADESGS-z14-0. Es ist der blasse Fleck einer Galaxie, die nur 300 Millionen Jahre nach Beginn des Universums entstand.

Technischen gesehen liegt diese Galaxie bei der gemessenen Rotverschiebung z=14.32. Sie existierte also schon, als das Universum erst ein Fünfzigstel seines jetzigen Alters hatte. Praktisch alle Objekt im Bild sind Galaxien.

Zur Originalseite