Begegnung von Mond und Venus über einem Baum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Alex Dzierba

Beschreibung: Was ist der helle Fleck beim Mond? Die Venus. Vor ungefähr einer Woche stand der Erdmond dem fernen Planeten Venus ungewöhnlich nahe – ein zufälliger Winkeleffekt (Appulse). So eine Zufallsbegegnung ist ähnlich einer Konjunktion (dieser Begriff bezieht sich auf die Koordinaten), bezeichnet aber allgemein, wenn zwei Himmelsobjekte scheinbar nahe beisammen stehen. Diese Begegnung von Mond und Venus – er betrug einmal nur 0,05 Grad – wurde am frühen Morgen bei Aufgang hinter dem KokoKrater auf der Insel O’ahu (Hawaii, USA) fotografiert.

Der Mond war in einer Sichelphase, links unten reflektierte er Sonnenlicht direkt, den Rest des Mondes sieht man im Erdschein – das ist Sonnenlicht, das von der Erde reflektiert wurde. Im Vordergrund sind die Blätter und Zweige eines Kiawebaums als Silhouetten vor der hellen Sichel zu sehen, andere erscheinen vor dem dunkleren Hintergrund weiß wegen des nach vorne gestreuten Lichts. Enge Winkelbegegnungen mit dem Mond treten typischerweise mehrmals pro Jahr auf. Zum Beispiel soll der Mond am 1. März in einem Abstand von weniger als 0,2 Grad am fernen Saturn vorbeiziehen.

Zur Originalseite

Perijovum 16: Vorbeiflug an Jupiter


Videocredit und LIzenz: NASA, Juno, SwRI, MSSS, Gerald Eichstadt;
Musik: Die Planeten, IV. Jupiter (Gustav Holst); USAF Heritage of America Band (via Wikipedia)

Beschreibung: Beobachten Sie, wie Juno wieder einmal über Jupiter zieht. Die Roboter-Raumsonde Juno der NASA umrundet weiterhin den größten Planeten unseres Sonnensystems auf ihren 53 Tage langen, stark elliptischen Bahnen. Dieses Video stammt von Perijovum 16, als Juno zum sechzehnten Mal seit ihrer Ankunft Mitte 2016 nahe an Jupiter vorbeiflog. Jedes Perijovum verläuft über einem etwas weiter liegenden Teil von Jupiters Wolkenoberflächen.

Dieses farbverstärkte Video wurde digital aus Standbildern der JunoCam erstellt, die alle fünf Sekunden fotografiert wurden. Das Ergebnis ist 125-fache Zeitraffer. Das Video beginnt mit Jupiters Aufstieg, als Juno sich vom Norden nähert. Als Juno ihre größte Annäherung erreicht – etwa 3500 Kilometer über Jupiters Wolkenoberflächen – fotografiert die Raumsonde den prächtigen Planeten beispiellos detailreich. Juno passiert helle Zonen und dunkle Wolkengürtel, die den Planeten umkreisen, sowie zahlreiche wirbelnde runde Stürme, von denen viele größer sind als Wirbelstürme auf der Erde.

Während Juno fortzieht, sieht man die markante delfinförmige Wolke. Nach dem Perijovum verschwindet Jupiter in der Ferne und stellt nun die ungewöhnlichen Wolken zur Schau, die über Jupiters Süden auftreten. Um die gewünschten wissenschaftlichen Daten zu erhalten, saust Juno so nahe an Jupiter vorbei, dass ihre Instrumente sehr hohen Strahlungswerten ausgesetzt sind.

Zur Originalseite

Henize 70: Eine Superblase in der GMW

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Josep M. Drudis

Beschreibung: Massereiche Sterne beeinflussen ihre galaktische Umgebung tiefgreifend. Indem sie interstellare Wolken aus Gas und Staub aufwühlen und durchmischen, hinterlassen diese Sterne – vor allem jene mit mehr als zig Sonnenmassen – ihre Markierung in der Zusammensetzung und an den Orten künftiger Sterngenerationen.

Spektakuläre Hinweise darauf befinden sich in diesem Nebel, Henize 70, auch bekannt als N70 und DEM301, der sich in unserer Nachbargalaxie, der Großen Magellanschen Wolke (GMW) befindet. Henize 70 ist eine leuchtstarke, etwa 300 Lichtjahre große Superblase aus interstellarem Gas, die von den Winden heißer, massereicher Sterne und Supernovaexplosionen aufgeblasen wird. Ihr Inneres ist mit dünnem, heißem Gas gefüllt, das sich ausdehnt. Weil Superblasen sich in einer ganzen Galaxie ausdehnen können, bieten sie der Menschheit eine Möglichkeit, die Verbindung zwischen den Lebenszyklen von Sternen und der Entwicklung von Galaxien zu erforschen.

Zur Originalseite

Fächer aus Nachthimmellicht vom See zum Himmel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Dave Lane; überlagerte Beschriftung: Judy Schmidt

Beschreibung: Warum sieht der Himmel wie ein riesiger Fächer aus? Der Grund ist Nachthimmellicht. Das hier abgebildete zeitweilige grüne Leuchten wurde 2015 in der Nähe des Bryce Canyon in Utah (USA) fotografiert und schien von einem See durch den Bogen unserer Milchstraße aufzusteigen. Das ungewöhnliche Muster entstand durch Dichtewellen in der Atmosphäre – Wellen mit wechselndem Luftdruck, die mit der Höhe zunehmen können, wenn die Luft ausdünnt, in diesem Fall in einer Höhe von 90 Kilometern.

Anders als Polarlichter, die ihre Energie aus Kollisionen mit energiereichen geladenen Teilchen beziehen, und die in hohen Breiten auftreten, entsteht Nachthimmellicht durch Chemolumineszenz. Dabei entsteht Licht durch eine chemische Reaktion. Nachthimmellicht ist häufig nahe dem Horizont zu beobachten und sorgt dafür, dass der Nachthimmel niemals völlig dunkel wird.

Zur Originalseite

LDN 1622: Dunkler Nebel im Orion

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Tapio Lahtinen

Beschreibung: Diese kosmische Szene zeigt die Silhouette eines faszinierenden Dunkelnebels. Lynds‘ Dunkelnebel (LDN) 1622 hebt sich vom blassen Hintergrund aus leuchtendem Wasserstoff ab und ist nur auf lang belichteten Teleskopaufnahmen der Region leicht zu erkennen.

LDN 1622 liegt am Himmel nahe der Ebene unserer Galaxis, in der Nähe der Barnardschleife, einer großen Wolke, die den reichhaltigen Komplex aus Emissionsnebeln umgibt, die in Orions Gürtel und Schwert zu finden sind. Doch der undurchsichtige Staub von LDN 1622 ist wahrscheinlich viel näher als Orions berühmtere Nebel, vielleicht nur 500 Lichtjahre entfernt. In dieser Entfernung wäre dieses 1 Grad weite Sichtfeld weniger als 10 Lichtjahre breit. Seine unheilvolle Erscheinung verleiht dieser dunklen Weite den gängigen Namen Butzemann-Nebel.

Zur Originalseite

Zwillingsgalaxien in Virgo

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte:  CHART32 Team, Bearbeitung: Johannes Schedler

Beschreibung: Das Spiralgalaxienpaar NGC 4567 und NGC 4568 teilt diese scharfe kosmische Aussicht mit der einsamen elliptischen Galaxie NGC 4564. Sie alle gehören zum großen Virgo-Galaxienhaufen. Das augenfällige Spiralpaar mit den klassischen Spiralarmen, Staubbahnen und Sternhaufen ist auch als Schmetterlingsgalaxien oder siamesische Zwillinge bekannt.

Die Galaxienzwillinge, die sehr nahe beisammenstehen, scheinen durch die Gezeitenkräfte nicht allzu verzerrt zu sein. Ihre riesigen Molekülwolken hingegen kollidieren bekanntlich und schüren wahrscheinlich die Entstehung massereicher Sternhaufen. Die Galaxienzwillinge sind ungefähr 52 Millionen Lichtjahre entfernt, ihre hellen Kerne sind vermutlich etwa 20.000 Lichtjahre voneinander entfernt. Die gezackten Vordergrundsterne liegen natürlich in unserer Milchstraße.

Zur Originalseite